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Abstract

This study aims to develop and analyze a compartmental model for Visceral Leishmaniasis (VL). The model is calibrated using monthly
incidence data from South Sudan for the year 2011. We derive and estimate the basic reproduction number, R, for the proposed model
and explore the possibility of bifurcation within the system. Various control strategies are examined using optimal control theory, including
the use of treated bed nets, vaccination, reservoir culling, and treatment of infected individuals. Numerical simulations indicate that a
combined approach involving mass treatment, vaccination, bed nets, and reservoir culling is most effective in reducing VL prevalence.
Among these, mass treatment emerges as the most critical intervention during outbreaks. Conversely, relying solely on reservoir culling

is unlikely to significantly benefit the community.
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1. INTRODUCTION

Leishmaniasis is recognized as the second most prevalent
vector-borne parasitic disease globally. Among its various
forms, Visceral Leishmaniasis (VL), Post-Kala-Azar Dermal
Leishmaniasis (PKDL), Cutaneous Leishmaniasis (CL), and
Mucocutaneous Leishmaniasis are the most commonly observed.
Annually, an estimated 200,000 to 400,000 cases of VL are reported
worldwide, resulting in approximately 20,000 to 40,000 deaths
[1]. These figures are particularly high in countries such as
India, Nepal, Bangladesh, and Sudan, according to the World
Health Organization (WHO) [2]. Common symptoms of VL, also
known as “Kala-azar,” include high fever, pallor, weight loss, and
splenomegaly [3]. Given the potentially fatal progression of the
disease if left untreated, the WHO emphasizes the urgent need
for its complete eradication.

Visceral leishmaniasis (VL) is often misdiagnosed as
malaria due to overlapping clinical features such as fever and
splenomegaly, complicating accurate diagnosis, especially
in regions where both diseases are endemic. Additionally, a
significant proportion of VL infections remain asymptomatic,
posing challenges for disease surveillance and control efforts
[4, 5]. Early diagnosis and treatment are crucial for preventing

the progression of VL. Current control measures—including
the use of insecticide-treated bed nets, indoor residual spraying,
and prompt treatment—have effectively reduced morbidity
and mortality associated with the disease [6, 7]. However, VL
continues to be a public health concern due to factors such as
limited access to healthcare, the development of drug resistance,
and insecticide resistance in sandfly vectors. Given that
individuals who recover from VL typically develop long-lasting
immunity, the development of an effective vaccine is considered
a promising strategy for disease control. While no human vaccine
is currently available, ongoing research and clinical trials are
exploring various vaccine candidates to enhance prevention
efforts [8].

Mathematical modeling provides a crucial framework for
unraveling disease-transmission dynamics, evaluating control
measures, and guiding policy decisions. For instance, Dye [9]
introduced a deterministic model to describe VL spread in Assam
and later refined it to assess various intervention strategies [10].
Since then, numerous authors have developed VL transmission
models—Chaves [11], Das [12], Elmojtaba [13], Mubayi [14],
Agiyingi [15], and Stauch et al. [1, 6, 16]—yet relatively few
validate their structures against fresh epidemiological data. In
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regions of Brazil and East Africa, canine VL (CVL) caused
by Leishmania donovani reaches alarming prevalence among
dogs [17], with Phlebotomus and Lutzomyia sandflies acting as
vectors between animal and human hosts [18]. Burattini et
al. [19] further expanded this work with an SEIR-type model
capturing zoonotic transmission cycles among sandflies, animal
reservoirs, and humans. Subsequent studies [1, 6, 13, 16, 20]
introduced additional infective stages to account for PKDL
development, yet only a handful—Mubayi [14], Stauch et al.
[1, 6, 16], and [21]—incorporate validation using new data.
Recognizing the limitations of existing diagnostics, recent non-
autonomous anthroponotic models stratify populations across
humans, dogs, and sandflies [21, 22] but often omit asymptomatic
or latent human stages—and, in some cases, overlook the roles
of vaccination and reservoir culling in curbing VL transmission
[21].

In our current study, we extend the previous model by
introducing a latent human class: individuals remain in a latent
state for an average of 1/y, days, after which they progress to either
an asymptomatic infected compartment (I ,) with probability f, or
a symptomatic infected compartment (I;) with probability 1 — f;.
Our primary objectives are to identify the most effective control
strategy for reducing transmission and to evaluate the impacts
of four interventions: (i) vaccination, (ii) insecticide-treated bed
nets, (iii) medical treatment of infected humans, and (iv) culling of
infectious reservoirs. In particular, we emphasize the inclusion of
vaccination in the model, given its potential as a pivotal measure
for suppressing visceral leishmaniasis incidence.

The remainder of the paper is structured as follows. In Section
2, we develop the compartmental model for VL. Section 3 presents
its mathematical analysis. In Section 4, we fit the model to
monthly incidence data of new VL cases. Section 5 formulates and
investigates optimal intervention strategies, and finally, Section 6
showcases the numerical simulation results.

2. MODEL FORMULATION

Following [1, 6, 16], we will formulate a basic SEIR-type model
concerning the history of infection to describe the transmission
dynamics of VL disease across. The model basically contains
human, reservoir and sandfly populations. We have partitioned
the total population of humans, Ny(t), into seven specific
compartments of subpopulations viz. Sy, Ey, 14, Iy, Ty, Py and
Ry. That s,

Ny(£) = Sy(t) + Ey(6) + Ly() + Iy(t) + Ty (8) + Py(t) + Ry (0).

We also partition the populations of reservoir (N) and sandfly
(Ny) into susceptible reservoir (Sg) and infected reservoir (I ), and
susceptible sandflies (S;/) and infected sandflies (I}/), respectively.
Thus,

Np(£) = Sg(t) + Ix(0), Ny (t) = Sy (£) + I,/ (t).

The birth and death rates of susceptible humans (Sy;) are Ay
and u,, respectively. Susceptible humans became infectious
(i.e., in a latent stage), with aob;—v being the force of infection

H
where the mean rate of bites per sandfly is denoted by a, while
the transmission from the sandﬂy to human (reservoir) is b.
After an average period of — days, latent humans (E;;) became
either asymptomatic, I 4, or symptomatlc I;, with probabilities
f1and 1 — f,, respectively. The asymptomatic infected stage
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usually sustains for L days. The fraction p, and p, of the human
Y

population develop s§mptomatic KA(Iy) and dormant stage (Ty;)
respectively, and the remaining portion p; = 1 — p; — p, recovers
from the asymptomatic infected stage (I,). Infected humans in
the stage (I;;) received treatment at an average rate a,, and the
others die at an average rate § due to the disease. A proportion
of patients o, from I;; become recovered (Ry), and the remaining
part (1 — o) of individuals putatively enter the dormant stage
(Ty) from which PKDL (Py;) pursues. Humans with PKDL get
treated at a normal rate «, or recover naturally at an average

B. After ES days, due to cell resistance, recovered humans (Ry;)
P

again turned up to be susceptible S;;. Susceptible reservoirs and
sandflies are recruited at a constant rate Ay and A, respectively,

and attain infection at aob I\I]l which is the rate of force of infection
H

and ,ulaoc + aoc + aoc + ,uzaoc X respectively, where
Ny

c is the probablhty of transmission for sandﬂy infection. The

natural mortality rates of reservoir and sandflies are y, and y,,

respectively. Keeping these assumptions in mind, we formulate

the following system of differential equations:

, Sy
Sy = Ag— aobIVN = MuSu + PrRy,
1 _ SH
E, = aovaN— = (Ve + Mn)En,
H
Iy = f1YeEu — n+ m)la,
I;; A = fYEy +p1ynla — (o + 6 + )y,
T, = (-o)aly— (6, +m)Tu,
Py P2¥nla +6,Ty — (ay + B + y)Py,
Ry = psypla+ooly +(ay + )Py — prRy — iRy,
S,
Sho= Ag-— aobIVN—I; — .Sk,
Sr
I, = aobIV — w1,
) I, Iy I
S, = Ay Sv(ulaoc + aocN + aocN + MzaoCN + ),
) I, 1
I, = SV(/"laoc + aocN + aocN + ,Uzaoc Ny =) — Iy,

where the total population of humans, reservoir and sandflies
which are respectively given by Ny, Ny and Ny, will satisfy the
following differential equations:

N, = — uNy — 81,
N;z = AR - #VNR’
N, = Ay—pNy.

2.1. Basic Properties

All parameters of the model (1) are assumed to be nonnegative.
Furthermore since the above model monitors living populations,
it is assumed that all the state variables are nonnegative at time
t=0.

Theorem 1 Let us consider the initial data as F(0) > 0, where
Ry (1), Sg(t), Ix(t), Sy (¢), I,/(t)). Then the solutions F(t) of model (1)

are nonnegative for all time t > 0. Furthermore,

A
lim sup Ny, (t) < ==,
Hn

t—o0
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A
lim sup Ng(t) < ,u_R’

t—o0 r

A
limsup Ny (¢t) < #—V

t—o0 v

Proof: Please see Appendix A.
Invariant region

The model (1) will be analyzed in a biologically-feasible region
as follows. Consider the feasible region

[ =Ty XTIy XTIy CR, XRIXR2

with,

Ty = {(Su (1), By (1), 1y(0), Iy (1), T (), Py (1), Ry (1)) = Ny < %},

Ty = {(Sx(. In(0) : Ng < %},

T

Iy = {(Sy O Iy(1) : Ny < %}.

Theorem 2 The regionT = T'y X Tx x T, C R. X R2 X R2 is
positively invariant for the basic model (1) with non-negative initial
conditions in R}

Proof: Please see Appendix B.

3. MODEL ANALYSIS

3.1. Disease Free equilibrium and Basic Reproduction
number

The disease free equilibrium of the model (1) is given by:

Ay Ag Ay
EO:(,u_OOOOOO 0#—,0).
Next, we apply the next—ger{eratiorvl operator method ([23]) to
determine R, from system (1).

The basic reproduction number, R, is given by R, = p(FV 1) =
Rorr + Ror (details can be found in Appendix D),

where, Ro; = AC and Ry = BC,

(rn + 1)A = f1)+ f1vup:

A = agey.k| D,
Sfi Sf1vnpalay + 6 + )
e+ m)n+ ) Dulay+ B+ )
(1 =), 6,{(yi + un)A = f1) + frynen}
D(ay + B+ pn)(6, + pn) '
D, = (¥e+u)¥n+ )y + 36+ ),
B aockz,uz’ _ aob.
kyu, Mo

The epidemiological implication of the finding above is that,
regardless of the original prevalence of infection, the disease
will be eradicated from the population if R, < 1. The possible
interpretation for R,y and Ry as the number of secondary
infections caused by an infectious sand fly. We note that R, is the
weighted average of the basic reproduction numbers of reservoir
and human populations. The balance of each species’ competence
to transmit infection weighted by their corresponding population
density will determine disease evolution.

Theorem 3 The disease-free equilibrium is locally asymptotically
stable if Ry < 1 and unstable if Ry > 1 ([24]).
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3.2. Endemic equilibria
From (1), we get that

* An L — LSk . I = OSuba I = 65 Sh(slathls) |
H un+6,a-F) T H L A Il L3l
7 = SSuBltbll b GGl bllopblslll . by g .
H hlslels M hilslglsho o >
DR L AReR.*zAV * Vo),
ity R GtV e,V | rO
) (,bI aObI p*
where 6}, = —%;6; = _," v = fGoC - i + aoc—H +
. Ny Ny Ny
I
Mzaoc_

o= (et )l = fivel = Gu+ )i = A= frels
P1¥sls = (g + 6 + ), l; = (1 = ay,ls = (6, + wp), b

P2V ho = (@ + B+ ), F = ey ol tCatBy

HMhtpr

65 N; . .
Now, s—H = N—R implies that 8; = 6;,Z(6;;), where Z(6},) =
R H
(Ag—8I7 )pr
ApMp
I* P* [*
Also, 67, lf‘laoc +ape 2t + aoc + Maoe
H 6 NH @ R
. G Mo apC
So, we can write, 6], = . Z*L
1+H6H 6R+/,¢,
O Sy 0% 5% (I314+L1s)
where, 04G =  pacEE 4 4qeE AT
hl3 L3l
o il bl S thlelslo} Ni =S:H(1+ He*)

Lil3lglgho

So, we get, 6}, = 6;,U(6;,), where, U(6},) =

H2a0c8;Z(65;)
05 Z(E5)+1y

1+HOy,
Substituting I}, in 0], and 6y, we get,

HO,' +6;,A+B=0

Ayapgb

where, A = Hu, +U(6}) ~(1-F) 252, B = U(6})(n,— L2,
Af My

We can obtain the positive equlhbrlum of the system (1) by
solving the above equations. An interesting observation is that
if the conditions B > 0, A < 0 and A?> — 4BH > 0 hold, then the
system has two positive equilibrium points. However, if B < 0 or
A? —4BH = 0or B = 0,A < 0 these conditions hold, then the
system (1) tends to have a unique equilibrium point.

3.3. Existence of backward bifurcation

When R, < 1, we can observe the stable endemic equilibrium
point and a stable disease-free equilibrium point exhibiting
backward bifurcation. It is interesting to check the similar
behaviour for our model (1).

Theorem 4 The system (1) undergoes backward bifurcation at
R, = 1 whenever the bifurcation coefficient, a, is positive (as b > 0
always).

In order for R, < 1, the phenomenon of backward bifurcation
has serious public health implications; therefore, it is no longer
sufficient for effective control (or elimination) of the disease. In
this type of a case of (backward bifurcation) situation, the original
sizes of the subpopulations compartments of our model (state
variables) will determine the effectiveness of disease control or
elimination. We will then attempt to determine the value of the
bifurcation parameters a & b.

To study the possibility of backward bifurcation, we use the
centre manifold theorem ([25, 26]), mainly we use the theorem
in Castillo-Chavez and Song ([26]).

For the case when R, = 1, and we assume that a, = ¢ is selected
to be the bifurcation parameter, then the Jacobian matrix of the
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system (1) at the disease-free equilibrium point is given as follows:

—up 0 0 0 0 0 or 0 0 0 -
0 - 0 0 0 0 0 0 0 0 y1
0 »3 —y4 0 0 0 0 0 0 0 0
0 s Y6 -y7 0 0 0 0 0 0 0
0 0 0 8 —y9 0 0 0 0 0 0
0 0 Y10 0 5p -y 0 0 0 0 0
0 0 Y12 Y13 o Y4 V15 0 0 0 0
0 0 0 0 0 0 0 —ur 0 0 -y17
0 0 0 0 0 0 0 0 —uy 0 17
0 0 —¥18 Y19 0 —¥20 0 0 -1 —Hv 0
0 0 18 Y19 0 ¥20 0 0 y21 0 —Hv

where,y, = ¢b,y, = (Ve + Hn)¥s = f1¥e: Vo = (W + i), ¥s =

A= VY6 = Pr¥ns¥7 = a1 + 0 + fy,ys = (1 — 0)ay, s
5 +Hp> Y10 = P2Vns Y11 = +ﬁ+l"hy}’12 = P3¥Yn: Y13 = U“l’ym

o+ B.yis = (or + Mu)s Y17 = ¢bN» N*sJﬁs = M1¢C a.V19 =
N*

v * A " A, %
¢CNX,J’20 ¢c *7y21_¢C#2 Ny = VN = HN =

Calculation of the elgenvectors of 3¢ It can be shown that
the Jacobin of the system (1) has a right eigenvector given by
W = (w;, Wy, Wy, Wy, Ws, We, Wy, Wg, Wy, Wrg, Wyp)T, Where

Wy — prwy

w, = i = H,(w;;)
w, = &w
2 y,

Yy
w; = _3w2 H,(wy;)

Y4

w, + w
Wy = Yslla ¥ Vet = H;(wy)
Y7

Y,
ws = _8w4 Hy(wy;)

Y9

YioWs + SpWws
We = —_— = Hs(w;,)

Yn
w, = Y1oWs + Y13Wy + Y14We = Hy(wy,)
Y15

—-)
Wy = :ur” Wy
wy, = —Ws
Wy = —Wy
w, = (V15W3 + Y1oWy + YyoWs + Y1 Ws) = Hy(w,,)

)
)
and a left eigenvector given by V =

(01, Uy, U3, Uy, Us, Ug, Uy, Ug, Vg, Vg9, Uq1), Where

Uy, = U =U =0 =0
Y3U3 + YsU,
v, = ———— =G(vy)
V2
YeUs + Y1801
v; = =/ =G,(vy)
Ya
YgUs + U11)19
vy = ————— =Gs(vy)
V7
d,v
p“6
Us = = G4(vy1)
Yo
Y20
Ve = ——Un
i
Va1
Vg = —Uny
My
bn = Un

Computation of a and b: After some tedious calculations, it can
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— initial value ()
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Figure 1. Existence of backward bifurcation for the model (1).

be shown that

at = X-Y
QeC W3 + AeCW, + AyCWg  ApClL, Wy
X = vyw
11Wiol N Ny ]
a,cN;
Y Uu(z w; ) - (wsﬂl + wy + we) + Uzwu N (Z w;)
H =2
aoch;(w8 + wy) ayb
T U Woly———— 5 + Doy Wy ——
A N
and
b* = b(vwy + +vewy;)
+ cv w + w, +w, + Wo | —
(s 4 G)N* Mo 9]NR

Figure (1) confirms the presence of backward bifurcation in the
model (1). Figure (1) shows a time-series plot with different
initial conditions convergent to both the disease-free equilibrium
(DFE) and an endemic equilibrium point (EEP) when R, =
0.88 < 1. The initial values with I;;(0) > 0 converges to
endemic equilibrium point (EEP), otherwise it will converge to the
disease-free equilibrium (DFE). Parameter values used are : IT, =
160, 4, = 0.002,p, = 0.25,p, = .001,&; = 0.03,y, = 0.02,0

0.84, f; = 0.98,b = 040, p; = 0.002,p; = 1 —p; — Py, k; =
0.60,k, = 2,¢c = 0.07,y, = 0.01, 4, = 0.06,II, = 200,11, =
75,8, = 0.0016,6 = 0.011,a, = 0.006,8 = 002,44, = L,y =

1, 4, = 0.065.

4. MODEL CALIBRATION

In this subsection, first, the author calibrates the model (1) to
yearly incidence data of Visceral Leishmaniasis in South Sudan
([27]). The estimated parameters are b, f1, k1, k2, and c. (Refer
to the Appendix E section for more details).

Figure (2) illustrates the fitting of the model (1) for the
cumulative reported new VL cases. Tables 1 and 2 consist
of the values of the estimated model parameters. In South
Sudan, observing the estimated initial values of various infected
human compartments (see Table 2) reveals that the epidemic
was already widespread among the population when the data
were obtained (January 2011). With a 95% confidence interval,
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Cummulative New VL Cases
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Days (1st January 2011-31st December 2011)

Figure 2. Plots of the observed cumulative data and the out put of the
fitted model (1). Cumulative new VL cases (blue star) from the data, and
model simulated data (thick black curve) are plotted with the parameter
estimates using parameter values and initial conditions from Table 1 and
Table 2 for the time period ( 1st January 2011 - 31st December 2011).

0.8 T T T T T T

Figure 3. Plot of the PRCC over time of the model (1). The PRCC is
calculated with respect to R, with significant level 0.05, using 10000
samples.

the estimated value of transmission probability that accounts
for human susceptibility to infection is 0.20 on average. The
primary reproduction number’s estimated value is 3.91 (with a
95% confidence interval).

4.1. Sensitivity analysis

Latin Hypercube Sampling (LHS) method in combination with
Partial Rank Correlation Coefficient (PRCC) multivariate analysis
([28], [29], [30]) were used to do the sensitivity analysis for the
model (1) on 2000 random parameter samples. A useful method
for predicting the nonlinear but monotonic connection between
input and model result is PRCC. The estimated parameters in
Section (4) serve as the inputs. The parameters’ minimum and
maximum values are shown in Table 2. When determining the
value of R,, the most crucial parameters are b, f, u,,c, and u,
(See Figure (3)). A positive value of the PRCC score implies that

increasing that particular parameter will increase the value of R,.

In contrast, a negative value shows that decreasing that parameter
R, also tends to decline.

Applied Mathematical Biosystems

42

Biswas et al.

Table 1. Parameter description, values, posterior summary and
sources of model (1).

Para.  Description Value Range Source

Ay Constant 1Ny (0) - [21]
recruitment rate of day~!
Human

Hrr Death rate of 5.64 x 107> - [31]
Human day™!

Ag Constant urNz(0) - [6]
recruitment rate of day~!
Reservoir

HR Death rate of 0.0017day~! - [10]
Reservoir

Ay Constant uy Ny (0) - [6]
recruitment rate of day~!
Sandfly

Hy Death rate of 0.0668day~! - [6]
Sandfly

) Death rate due to 0.011day™! - [32]
VL

1/6, Duration until 630 days - [6]
relapse to PKDL
stage

a, Treatment rate in 0.033day™! - [33]
PKDL stage

B Natural recovery 0.002day™! - [34]
rate from PKDL
stage

1/p,  Period before 0.0032day”! - [6]
recovered
humans becoming
susceptible again

o1 Fraction developing 0.01 [0.01, 0.02] [6]
symptomatic KA

02 Fraction developing 10™* [1074,2 x [6]
PKDL 1074]

3 Fraction recovering 1—p; —p, - -

o4 Proportion moving 0.84 [0.80,0.90] [6]
from KA to
recovery

)7 Infection 1 - Assumed
probability of
sandfly biting
reservoir

a Average biting rate  0.20 day™! [0.15,0.3] [6]
of sandflies

a Treatment rate of 0.03 day~! [0.01,0.04] [6]
VL in symptomatic
KA stage

1/7. Sojourn time in the 0.01526 [0.01, [6]
exposed class day™! 0.025]

1/y,  Sojourntimeinthe 0.068day~™! [0.01,0.02] [6]
asymptomatic KA
stage

b Transmission 0.205 [0.12,0.40] Estimated
probability in
human and
reservoir

f1 Fraction of exposed  0.92 [0.85,0.99] Estimated
humans developing
asymptomatic KA

c Transmission 0.07 [0.01,0.2] Estimated
probability in
sandfly population

ky Reservoir per 0.60 [0.4,1] Estimated
human

ky Sandfly per human 1.25 [0.6,2] Estimated

Ry Basic reproduction 3.91 - Estimated
number
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5. THE OPTIMAL CONTROL PROBLEM

Some intervention strategies, like the use of treated bed nets,
vaccination of the human population, the effective treatment of
infected persons with antibiotics, and the culling of reservoirs,
are some measures the author includes in this section to decrease
the spread of visceral leishmaniasis infection. We should include
vaccination as a control technique in VL mathematical modelling
since it can be employed as a crucial strategy to lower the
prevalence of VL. The control functions that we have used here are,
uy, Uy, Us, U, and us, which respectively represent time-dependent
efforts of bednets, vaccination, treatment of symptomatic KA
patients, treatment of PKDL patients and culling of reservoirs.
The controls are practised over a time interval of [0; ¢].

System of nonlinear differential equations representing the
effect of different interventions on the basic model (1), is given as
follows:

S
Sy = Ag- aobIVN_Z(l =y (1)) — UnSu + PRy — U055y
' _ SH
By = agblynt (1~ () ~ (e + )y
H
I = fiveEn — o+ m)la
Iy = A= fveEu+piyala — ws(0) + 6 + w)ly
Ty, (1 =zl — (6, + 1Ty
Py = o¥ula+8,Ty — (uy(t) + B + )Py
Ry, = psypls+ ous(OIg + (uy(t) + Py + uy0,5y
—pRp — uuRy
Sk
Sy = aobIVN — (4 + us(1))Sg 3
! _ SR
I, = aObIV_ — (U, + us()Ig
Ny
Iy
S, = (ulaocSV + aocSV + aocSV )(1 —uy (1))
I
ﬂzaocsv = MoSy
I, = (waycS —A+acS —H+acS P—H)(l—u(t))
v 100 VN g v 1

+/v‘2aoCSVN = poly
The initial conditions being S;(0), E;(0), 1,(0), I;(0), T(0),
P,(0), Ry(0), Sg(0), Ix(0), S, (0), I,(0) and the above model
parameters are listed in Table 1 and Table 2 . The controls
u; (1), uy(t), us(t), uy(t) and us(t) for our model are bounded and
Lebesgue integrable functions.

The control problem involves minimizing the number of
infected individuals with Visceral leishmaniasis subject to the
system (3). The objective function for our model that has to be
minimized is defined in the following manner:

Ly

J(uy, Uy, -, Us) = { (AL 4(8) + AT () + A3 Py (t) + Aulp(2)

Ip2 e 1y 2 1po 1o 0
+£Bu1 + ;Cuz + ;DM3 + ;Eu4 + ;FMS)d[,

subject to the state equation (3).

Here t; is the final time and A;, A,, A; and A, are
weight constants of the I, I, Py,I; group, respectively. In
contrast, B, C, D, E, and F are weight constants for bed nets,
vaccination, treatment (for I;;, Py;) and culling efforts, respectively,
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which regularize the optimal control. We assume no linear
relationship exists between these interventions’ coverage and their
corresponding costs. The weight constants play a significant role
in balancing the infectious individuals and cost terms according
to their size and importance. These weight constants might be
different for different countries or scenarios. We choose the
baseline weight constants as Table (3) for simplicity.

The author searches for the optimal controls uj(t), u;(t), u;(t),
u, (t) and uZ(t) such that

J(uy, u; ,us) € U}

uz) = mindJ (uy, Uy, -+, Us); (Uy, Uy, -+

where U = {(u, (1), uy(t), -, us(®)); (uy (t), uy (1), -+, us(t))
measurable,a; < w(t) < b;,i = 1,2,3,4,5,t € [0,¢,]} is the
control set.

Table 2. Demographic parameters description, values and
posterior summary.

Demog. Description Lower Upper Source/
Param. value
Ny(0)  Total human 1.05x107 1.05x107 [31]
population
Sy (0)  Susceptible humans 0.80Ny(0)  0.90Ng(0) 8.15%x10°
Ex(0)  Latent humans 0.085Ng(0)  0.10Ny(0) 8.75%x10°
I4(0) Symptomatic KA 0.80C(0) 0.88C(0) 1040
Py(0)  PKDL population  0.08C(0) 0.12C(0) 9
Ry(0)  Immune humans  0.08Ng(0)  0.10Ngx(0)  9.10x10°
I,(0) Infected sandflies 0 0.0002Ny,(0) 1790
Iz (0) Infected reservoirs 0 0.0004NR(0) 1250

Table 3. Computational parameters values

Comp. parameter Symbol Value Source

Final time ty 100 days Assumed
Upper bound u; b, 1 Assumed
Lower bound u, a; 0 Assumed
Upper bound u, b, 1 Assumed
Lower bound u, a, 0 Assumed
Upper bound u3 bs 1 Assumed
Lower bound u3 as 0 Assumed
Upper bound u, by 1 Assumed
Lower bound u, a, 0 Assumed
Upper bound us bs 1 Assumed
Lower bound us as 0 Assumed
Weight u; B 1 Assumed
Weight u, C 1 Assumed
Weight us D 1 Assumed
Weight u, E 1 Assumed
Weight us F 1 Assumed

5.1. Analysis of the Optimal Control Problem

The conditions that an optimal control must satisfy come from
Pontryagin’s Maximum Principle. The Hamiltonian H, with
respect to u,, u,, us, U, and us can be written as:

H

1 1
(AL (8) + ATy (8) + APy (t) + ALp(t) + zBuf + ECug

11

1 1 1
=Du + -Eu; + EFug) + .48

t 3 2 :
i=1

“)

where g; is the right-hand side of the differential equation of the
" state variable and A, are the adjoint variables. By applying
Pontryagin’s Maximum Principle, one can get the following result:

Applied Mathematical Biosystems



Optimal Strategies for Controlling Visceral Leishmaniasis

Proposition 1. An optimal control exists given by, uj, u;, u;,
u, and u: and corresponding solution, S;,Ey, I, Iy, Ty, Py,
R}, Sy, Iy, S, and I, that minimizes the objective function
J(uy,uy,us, uy, us) over U. Furthermore, there exist adjoint functions,
A,(8),4,(8),...,A11(t) such that:

oA I S,
S5 = (@b -m@)1 — N —A) + ki + 42020 —27)
Ia Iy Py
= (10 = A4)A = w (D) ageSy —= + apcSy —— + apeSy —)
Ny Ny Ny
oA Iy S,
SE= Al —aob R (- w (00 — 1) = ye(f1ds + (1= f1)A4)
Nu
Ia I Pr
= (10 = 411 — wy (D) ageSy —= + apcSy —— + ageSy —)
Ny Ny Ny
023 Sy
S0 =~ Al +re) = ve(eids + 0225 +P315)+(#1000F(110 =411 —uy (D))
Iy Iy Py
= (ho = A4)A —w(O)ageSy —= + apeSy — + apeSy —)
Ny® Ny® Ny?
N
- app LA - mO)h - 1)
H
N Sy
P = A + w3 () + pp + )4 — uz(D((A - 0)2s +U/17)+000E(110—/111>(1 —up (1)
Ia In Pr
- (ho = A4)A —wO)praeeSy — + apeSy — + apeSy —)
Ny Ny Ny
- a3 o) - )
H
oA I
22 = (8p +Hr)ds — pde — (o — 1)L — uy (D) ageSy —2=
at NH2
I P I
+  apcSy iz + apeSy —Hz) —agh~ Su > (L= w(0)(A - 42)
Ny Ny H
92 Sy
S = A+ O+ B+ s — a0 + A7 + aocm(lm - = ur ()
Ia Uil Py
- (ho —A4)A - w(O)paoeSy — + apeSy —— + apcSy —)
Ny N Ny
IySu
- ab—— 0 - ()4 — 1)
Ny
027 I
5 = el —prdy = (ho = i) —m (D) aoeSy ——
H
I, P, Iy S,
+ aocsviz + ageSy iz)—aob v I;(l—ul(l))(ll —1)
Ny Ny H
2 I S, Sy,
56 = by-(1= GO = 49)+ (ke +us(D)As — padoe NVR;* (10 = 1)
2 Sy,
ng = Ayt 19) = a0 LR (230 — A1)
Ng
N
+ uzaocN—';(/lm—Au)
28 T, P I, I,
T;O = {(Mlaofﬁ +ﬂocﬁ +aofﬁ)(1 —ul(l))-*'llzﬂofﬁ}(ﬂlo —211) + (mp)Aio
aA N N
S = aoby-(1-m ) — A) +aoh g (s = o) + () ®
with transversality conditions
li(tf) =0,i=1,2,..,11. (6)
v = mln{b max la (A4, — A))aybI, Sy +NHUn]}
1 = 1s 1s
NyB
N (A — 47)0,Sy
u, = min)b, max|a,, —————
c
Ay — A =0)As — oI
* _ 4 5 7)1 H
u; = mm{b3,m x | a, D ]}
(A1 — A,)P.
6 7/t H
u, = min {b4,max ay, T]}
(AgSg + Ao1R)
* _ : 8YR 9 R
u; = mln{bs,max as,—]}
148 Py S IyS
where Uy = (1a0c =2 + age ==L + agc2) (A1 — Aqg)-
Ny Ny H
Applied Mathematical Biosystems 44

Biswas et al.

Optimal Treatment|
Wihout Control

Asymptomatic KA

w0 50
time (days)

~ Optmal Treatment]|
Without Contral

W0 50
time (days)

+ Optimal Treatmen|
Without Control 4

g
-4

a0 60 a0 60
time (days) time (days)

Control Profie for reatment effect

) )
time (days)

Figure 4. Optimal solutions for the model (3) showing the effect of the
optimal treatment.

6. NUMERICAL SIMULATION

In the following section, the author discusses the simulation
results for the optimal control of different parameters. The values
for the parameters used are given in Table 1, Table 2, and the
other computational parameters are given in Table 3.

The author considers five scenarios: optimal treatment control,
optimal vaccination control, optimal treated bed net policy,
optimal culling policy, and all the controls as first, second, third,
fourth, and fifth, respectively.

We observe the following scenario:

6.1. First scenario

With this strategy, only treatment u,u, has been employed to
optimize the objective function J. The sum of susceptible with
the recovered population (S + Ry) increases (Figure (4)(a)) and
asymptomatic KA (I,) (Figure (4)(b)), symptomatic KA+ PKDL
(Iy + Py) (Figure (4)(c)), infected reservoirs (I) (Figure (4)(d))
decreases significantly. At ¢t = 100 days, the differences between
optimal treatment control and no control for Sy; + Ry, 4, Iy +
PKDL and I, are respectively 0.8 x10°%;0.9x10°%; 3.2x10*and2.8 X
10* (see Figure (4)). According to the control profile depicted in
Figure (4)(e), we can conclude that the control u;u, should be
at a maximum level for 98 days. This strategy suggests optimal
preventive strategies against VL in a community. At the same time,
an adequate treatment regime is not put in place simultaneously
and would not be a practical approach to control the disease at
the final time.

6.2. Second scenario

With this scenario, only vaccination u, is used to optimize the
objective function J. The infected human and reservoir population
dynamics do not tend to exhibit any significant effect under the use
of this control strategy. We can observe this in (Figure (5)(c) and
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Figure 5. Optimal solutions for the model (3) showing the effect of the
optimal vaccination.

(d)). This may be connected to the fact that treatment of infected
individuals is neglected, and as a result, the disease persists in the
community. However, a notable fact lies in the inference that on
employing this control mechanism, the Susceptible + Reservoir
population increases by 0.5x10° (Figure (5)(a)) and asymptomatic
KA (I,) infected population decreases (Figure (5)(b)). The optimal
vaccination profile is displayed in Figure (5)(e), where we can
observe that for 72 days, the optimal vaccination policy is 100%.
This scenario suggests that high levels of vaccine efficacy would be
required to reduce the equilibrium prevalence of VL significantly.
Vaccination rates impact the transient dynamics through the rate
of reduction of cases but ultimately have little role in long-term
prevalence where new cases are continuously imported.

6.3. Third scenario

The author considers only bed net control u; in the third scenario.
It can be observed in Figure (6)(a), (b), (c) and (d) that S;; + Ry
increase, I, I;; + PKDL and I decreases significantly. Figure
(6)(e) shows the optimal treated bed net policy profile. To decrease
VL infection, bed net should be used at 100% intensively for almost
100 days.

6.4. Fourth scenario

Here, we employ the optimal culling effect us for optimization
of the objective function J while keeping the other controls at
a constant value of zero. Small differences can be observed for
Sy + Ry (Figure (7)(a)), Asymptomatic humans (Figure (7)(b))
and I;+ PKDL (Figure (7)(c)) cases but us can eliminate the
infected reservoirs from the society (Figure (7)(d)). Figure (7)(e)
depicts that us should be at around 100% for the first 12 days
before dropping slowly to the lower bound on the 99th day. This
shows that the effective and optimal use of the culling effect on
the reservoirs in controlling VL does not benefit the community
in the long run.
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Figure 6. Optimal solutions for the model (3) showing the effect of the
optimal treated bednet.

6.5. Fifth scenario

This approach aims to optimize the objective function J by
implementing all available control measures. As shown in Figure
(8), the application of the control strategy leads to a consistent
decline in all infected compartments over time, whereas in the
absence of controls, infection levels increase. The strategy also
effectively reduces the number of asymptomatic human cases.
The treatment controls (u; and u,) remain at 100% effectiveness
for the majority of the period. In comparison, the usage of bed
nets (u,) and vaccination (u,) begins at 100% but steadily declines
to their minimum levels within 98 days. Meanwhile, the culling
control (us) starts at approximately 22% and gradually decreases
to its lower bound by day 99. This suggests that, under the optimal
strategy, the culling of reservoirs requires relatively minimal effort.

7. CONCLUSION

Authors of [21] discussed a general non-autonomous
anthroponotic visceral leishmaniasis model that considers
the human (infected compartments divided into symptomatic,
asymptomatic, PKDL-infected classes) dog and sand fly
populations and probes further to investigate the efficacy of
various control strategies. However, in this article, we modified

their model as humans stay latent for an average period of L
Ve

days, and became either asymptomatic, I, or symptomatic, I,
with probabilities f; and 1 — f;, respectively. We mathematically
analysed the model to derive the basic reproduction number R,
and estimated the value for the year 2011. Visceral leishmaniasis
or Kala-Azar is one of the most severely neglected tropical diseases
perceived by the World Health Organization (WHO). The danger
of this debilitating disease persists due to the inaccessibility of
promising treatment or human immunization. Broad research
is going on to build up a promising vaccine to prevent this

Applied Mathematical Biosystems
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Figure 8. Optimal solutions for the model (3) showing the effect of the
optimal control policy.
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devastating disease [35, 36]. The significant job can be played by
vaccination for preventing the span of the disease. In this article,
we considered four types of control, i.e., use of treated bednets,
vaccination, treatment of infective, and culling effect of reservoirs
(authors of [21] did not consider vaccination and culling effect)
to discuss the optimal use of control scenarios. Optimal control
policy proposes that combining the mass treatment, vaccination,
bed net, and culling effect give superior and productive outcomes
for diminishing VL prevalence. However, we find that mass
treatment is vital instead of other prevention strategies during
the outbreak of VL, and the optimal use of only culling effect to
the reservoirs is not beneficial to the society for the control of VL.
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10. APPENDICES

10.1. Appendix A. Proof of Theorem 1

Following the frame work of ([37]), let t; = sup{t > 0 : F(t) > 0}.
From the 1st equation of the model (1), we get that

Sy = Ay — Ay, NSy — 1Sy

which can be rewritten as

151

ATy, N)du + u, (D1}

0

d
Sisuespl [

151
> AHexp[/ +A(ly, Nyp)du + w,(t)]
0

So that,

SH(t1)exp[/ 1 A(Iy, Ny)du + ()] = Sy (0)
0

s e
0

Hence, Sy(t,) > 0.

Similarly it can be shown that F > 0if¢; > 0.

Next, we observe that 0 < Sy () < Ny (£),0 < E(t) < Ny(t),0 <
IL,(®) £ Ny(),0 < Ig(t) < Ny(0),0 < Ty() < Ny(),0 <
Py(t) < Ny(8),0 < Ry(t) < Ny(t). Now,

5]

+A(Iy, Np)du + u,()].

Ny = Ay— Ny —6ly
Thus, ,
Ay — upNy > NH > Ay — (/'{h + 6)NH
Hence,
Ay .. ) Ay
——— < liminf Ny(t) < limsup Ny (t) < —,
(Up+8) = oo 1 )
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as required. Similarly,

A A
R < liminf Ng(t) < limsup Ng(f) < =%,
(W) = 1w toc0 M
and Ay

A
<liminf Ny, (¢) < limsup Ny (t) < M_V
t—o0

,uv t—o0 v

10.2. Appendix B. Proof of Theorem 2
‘We observe that,

Ny, = Ay—puNy—34Iy
Ny Ag — M;Ng
Ny, = Ay—uNy

Using standard comparison theorem, it can be shown that
Ny(t) < Ny(0)e™ ! + (1 — /vtht)ﬁ, in particular N, (t) < 2 gf
Hh Hh

Ny (0) < 22,
Hh

Similarly, Ngx(t) < Nz(0)e ™' + (1 — ,u,t)A—R, in particular
My

Np(t) < 22 if NR(0) < 22 and
HMr My

Ny (£) < Ny (0)e ™! + (1 — p, )L, in particular Ny (1) < 2% if
My Mo
Ny(0) < L,
Ho

Thus, the region I' is positively invariant. Hence, it is sufficient
to consider the dynamics of the flow generated by (1) in I'. In
this region, the model is epidemiologically and mathematically
well-posed. Thus, every solution of the model (1) with initial
conditions in I" remains in I for all ¢ > 0. Therefore, the I'-limit
sets of the system (1) are contained in T

10.3. Appendix C. Proof of Theorem 3

Using Theorem (3) in [38], we can rewrite the system (1) in the
form

dx
< = FX.2)
‘Z_f = G(X,Z), G(X,0)=0 ©)

where the components of the column-vector X € R™ denotes the
number of uninfected individuals and the components of vector
Z € R" denote the number of infected individuals.

For the system (1),

X = (Su,Ru,Sk,Sy)
Z = (EH5IA5IHaTH’PH9IRsIV) (8)
F(X’ 0) = (AH - IuhSH + erH’ _(pr + :uh)RH’

Ag = H:Sgs Ay — w,Sy)”
A=-V

And the column-vector G(X, Z) is given by

S S
(aobIV<1—N—H> 0 0 0 aObIV(l—N—R)
R

H

G(X,2)

Sy Sy
aqcl (1——)+ac(1 + P, )<1——)
M1QoCLy Ny, oCUy H Ny,

T
Sy
+ﬂ2a0C'IR 1-— ]TR

©)
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it is clear that G(X, Z) > 0, therefore from ([38]), we get the result.

10.4. Appendix D. Basic Reproduction Number Calculation

Define F as the column-vector of rates of the appearance of new
infections in each compartment; V = V* + V~, where V* is the
column-vector of rates of transfer of individuals into the particular
compartment; and V™ is the column-vector of rates of transfer of
individuals out of the particular compartment. The matrices F
and V can be calculated from the partial derivatives of & and V
with respect to the infected classes computed at the DFE.
From the model (1),

Su

aybl, N
0
0
0
0

aybI, 2%

Nr

Iy Iy+Py
M1ageSy = + aycSy (
Nu Nu

Ig

aycSy —
>+/"z o SVNR
and

(Ve + H)En
(n + 1dla = f17.En
(o + 8+ wly — (1= f1)7En — pr¥ula
(6p + )Ty — (A — o)y Iy
(2 + B + )Py — Po¥iula — 6,Tx
JZ 5
Holy

Then the matrices F and V from the partial derivatives of # and
V with respect to the infected classes computed at the DFE are
given by

0 0 0 0 0 0 ayb
0 0 0 0 0 0 0
F= 0 0 0 0 0 0 0
1o 0 0 0 0 0 0
0 0 0 0 0 0 ayb
0 wa,em ayem 0 agoem uyapen 0
and
Ye +Hp 0 0 0 0 0 0
~f1ve Yh+ K 0 0 0 0 0
(1= f1)ve —P17h aj +8+up 0 0 0 0
v = 0 0 -1 -0)ay Sp +HH 0 0 0
0 —P2Yh 0 —3p ay + B +pup 0 0
0 0 0 0 0 Hr 0
0 0 0 0 0 0 Ho

10.5. Appendix E. Details about the Model calibration

The initial human demographic parameters S;(0), E;(0), I;(0),
P, (0), T, (0), Ry (0) as well as initial infected reservoir population
I;(0), initial infected sandfly population I;,(0) are also estimated.
Itisassumed that I,(0) = Ny (0)—Sy(0)—E(0)—I54(0)—T(0)—
P(0) — Ry(0) and T(0) = C(0) — I5(0) — Px(0) .

The carrying capacity (N, ) of the sandfly population is assumed
to be a multiple of the total human population at the beginning
i.e. N, (0) = k, X Ny (0), where k, is the total number of sandfly
per human.

Similarly, initially Ng(0) = k; X N(0) , where k, is the total
number of reservoir per human. The author estimates k; and k,
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from the given data of Visceral Leishmaniasis. Initial susceptible
sandfly population Sy, (0) = Ny,(0) — I,,(0) and initial susceptible
reservoir population Sg(0) = Ng(0) — Ix(0).

The author adds an extra compartment to the model (1), to
calculate the cumulative number of new notified VL infections
I C» by

dle
dt

= = f1VeEu + prvnla + (L =)oyl + 6,y + p2¥nla
which is the rate of new case. The numerical solutions of the
above equation with the model (1) give the predicted monthly
cumulative VL incidence. Here, I-(0)= number of new notified
cases at the first time point of the data (C(0)).

The sum of the squared error between the model and data
should be minimized, which is given by

RSS = E (7 — &(t;, 0)?,

where z; is the cumulative VL data, and g;(¢;, @) = I-(t;, @) +e,
€ ~ N(0,Ic%) where t; = 0,31, ..., 365 days, and ¢ be the error of
fit, which follows an independent Gaussian distribution having
unknown variance 2. MCMC tool box in MATLAB written by
Marko Laine ([39]) was used to estimate the unknown 6 for the
model (1). Geweke’s Z-scores ([40]) were used to ensure the
chain convergence.
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