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Abstract

This study aims to develop and analyze a compartmental model for Visceral Leishmaniasis (VL). The model is calibrated using monthly
incidence data from South Sudan for the year 2011. We derive and estimate the basic reproduction number, ℛ0, for the proposed model
and explore the possibility of bifurcation within the system. Various control strategies are examined using optimal control theory, including
the use of treated bed nets, vaccination, reservoir culling, and treatment of infected individuals. Numerical simulations indicate that a
combined approach involving mass treatment, vaccination, bed nets, and reservoir culling is most effective in reducing VL prevalence.
Among these, mass treatment emerges as the most critical intervention during outbreaks. Conversely, relying solely on reservoir culling
is unlikely to significantly benefit the community.
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1. INTRODUCTION

Leishmaniasis is recognized as the second most prevalent
vector-borne parasitic disease globally. Among its various
forms, Visceral Leishmaniasis (VL), Post-Kala-Azar Dermal
Leishmaniasis (PKDL), Cutaneous Leishmaniasis (CL), and
Mucocutaneous Leishmaniasis are the most commonly observed.
Annually, an estimated 200,000 to 400,000 cases of VL are reported
worldwide, resulting in approximately 20,000 to 40,000 deaths
[1]. These �gures are particularly high in countries such as
India, Nepal, Bangladesh, and Sudan, according to the World
Health Organization (WHO) [2]. Common symptoms of VL, also
known as “Kala-azar,” include high fever, pallor, weight loss, and
splenomegaly [3]. Given the potentially fatal progression of the
disease if left untreated, the WHO emphasizes the urgent need
for its complete eradication.
Visceral leishmaniasis (VL) is often misdiagnosed as

malaria due to overlapping clinical features such as fever and
splenomegaly, complicating accurate diagnosis, especially
in regions where both diseases are endemic. Additionally, a
signi�cant proportion of VL infections remain asymptomatic,
posing challenges for disease surveillance and control e�orts
[4, 5]. Early diagnosis and treatment are crucial for preventing

the progression of VL. Current control measures—including
the use of insecticide-treated bed nets, indoor residual spraying,
and prompt treatment—have e�ectively reduced morbidity
and mortality associated with the disease [6, 7]. However, VL
continues to be a public health concern due to factors such as
limited access to healthcare, the development of drug resistance,
and insecticide resistance in sand�y vectors. Given that
individuals who recover from VL typically develop long-lasting
immunity, the development of an e�ective vaccine is considered
a promising strategy for disease control. While no human vaccine
is currently available, ongoing research and clinical trials are
exploring various vaccine candidates to enhance prevention
e�orts [8].

Mathematical modeling provides a crucial framework for
unraveling disease-transmission dynamics, evaluating control
measures, and guiding policy decisions. For instance, Dye [9]
introduced a deterministic model to describe VL spread in Assam
and later re�ned it to assess various intervention strategies [10].
Since then, numerous authors have developed VL transmission
models—Chaves [11], Das [12], Elmojtaba [13], Mubayi [14],
Agiyingi [15], and Stauch et al. [1, 6, 16]—yet relatively few
validate their structures against fresh epidemiological data. In
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regions of Brazil and East Africa, canine VL (CVL) caused
by Leishmania donovani reaches alarming prevalence among
dogs [17], with Phlebotomus and Lutzomyia sand�ies acting as
vectors between animal and human hosts [18]. Burattini et
al. [19] further expanded this work with an SEIR-type model
capturing zoonotic transmission cycles among sand�ies, animal
reservoirs, and humans. Subsequent studies [1, 6, 13, 16, 20]
introduced additional infective stages to account for PKDL
development, yet only a handful—Mubayi [14], Stauch et al.
[1, 6, 16], and [21]—incorporate validation using new data.
Recognizing the limitations of existing diagnostics, recent non-
autonomous anthroponotic models stratify populations across
humans, dogs, and sand�ies [21, 22] but often omit asymptomatic
or latent human stages—and, in some cases, overlook the roles
of vaccination and reservoir culling in curbing VL transmission
[21].
In our current study, we extend the previous model by

introducing a latent human class: individuals remain in a latent
state for an average of 1∕
e days, afterwhich they progress to either
an asymptomatic infected compartment (IA) with probabilityf1 or
a symptomatic infected compartment (IH) with probability 1−f1.
Our primary objectives are to identify the most e�ective control
strategy for reducing transmission and to evaluate the impacts
of four interventions: (i) vaccination, (ii) insecticide-treated bed
nets, (iii)medical treatment of infected humans, and (iv) culling of
infectious reservoirs. In particular, we emphasize the inclusion of
vaccination in the model, given its potential as a pivotal measure
for suppressing visceral leishmaniasis incidence.

The remainder of the paper is structured as follows. In Section
2, we develop the compartmental model for VL. Section 3 presents
its mathematical analysis. In Section 4, we �t the model to
monthly incidence data of newVL cases. Section 5 formulates and
investigates optimal intervention strategies, and �nally, Section 6
showcases the numerical simulation results.

2. MODEL FORMULATION

Following [1, 6, 16], we will formulate a basic SEIR-type model
concerning the history of infection to describe the transmission
dynamics of VL disease across. The model basically contains
human, reservoir and sand�y populations. We have partitioned
the total population of humans, NH(t), into seven speci�c
compartments of subpopulations viz. SH , EH , IA, IH , TH , PH and
RH . That is,

NH(t) = SH(t) + EH(t) + IA(t) + IH(t) + TH(t) + PH(t) + RH(t).

We also partition the populations of reservoir (NR) and sand�y
(NV) into susceptible reservoir (SR) and infected reservoir (IR), and
susceptible sand�ies (SV) and infected sand�ies (IV), respectively.
Thus,

NR(t) = SR(t) + IR(t), NV(t) = SV(t) + IV(t).

The birth and death rates of susceptible humans (SH) are ΛH
and �ℎ, respectively. Susceptible humans became infectious
(i.e., in a latent stage), with a0b

IV
NH

being the force of infection
where the mean rate of bites per sand�y is denoted by a0 while
the transmission from the sand�y to human (reservoir) is b.
After an average period of 1


e
days, latent humans (EH) became

either asymptomatic, IA, or symptomatic, IH , with probabilities
f1 and 1 − f1, respectively. The asymptomatic infected stage

usually sustains for 1

ℎ

days. The fraction �1 and �2 of the human
population develop symptomatic KA(IH) and dormant stage (TH)
respectively, and the remaining portion �3 = 1 − �1 − �2 recovers
from the asymptomatic infected stage (IA). Infected humans in
the stage (IH) received treatment at an average rate �1, and the
others die at an average rate � due to the disease. A proportion
of patients �, from IH become recovered (RH), and the remaining
part (1 − �) of individuals putatively enter the dormant stage
(TH) from which PKDL (PH) pursues. Humans with PKDL get
treated at a normal rate �2 or recover naturally at an average
�. After 1

�r
days, due to cell resistance, recovered humans (RH)

again turned up to be susceptible SH . Susceptible reservoirs and
sand�ies are recruited at a constant rate ΛR and ΛV respectively,
and attain infection at a0b

IV
NH

which is the rate of force of infection

and �1a0c
IA
NH

+ a0c
IH
NH

+ a0c
PH
NH

+ �2a0c
IR
NR

respectively, where
c is the probability of transmission for sand�y infection. The
natural mortality rates of reservoir and sand�ies are �r and �v,
respectively. Keeping these assumptions in mind, we formulate
the following system of di�erential equations:

S′H = ΛH − a0bIV
SH
NH

− �ℎSH + �rRℎ,

E′H = a0bIV
SH
NH

− (
e + �ℎ)EH ,

I′A = f1
eEH − (
ℎ + �ℎ)IA,
I′H = (1 − f1)
eEH + �1
ℎIA − (�1 + � + �ℎ)IH ,
T′H = (1 − �)�1IH − (�p + �ℎ)TH ,
P′H = �2
ℎIA + �pTH − (�2 + � + �ℎ)PH ,
R′H = �3
ℎIA + ��1IH + (�2 + �)PH − �rRℎ − �ℎRH , (1)

S′R = ΛR − a0bIV
SR
NR

− �rSR,

I′R = a0bIV
SR
NR

− �rIR,

S′V = ΛV − SV(�1a0c
IA
NH

+ a0c
IH
NH

+ a0c
PH
NH

+ �2a0c
IR
NR

+ �v),

I′V = SV(�1a0c
IA
NH

+ a0c
IH
NH

+ a0c
PH
NH

+ �2a0c
IR
NR

) − �vIV ,

where the total population of humans, reservoir and sand�ies
which are respectively given by NH , NR and NV will satisfy the
following di�erential equations:

N′
H = ΛH − �ℎNH − �IH ,

N′
R = ΛR − �rNR,

N′
V = ΛV − �vNV .

2.1. Basic Properties

All parameters of the model (1) are assumed to be nonnegative.
Furthermore since the above model monitors living populations,
it is assumed that all the state variables are nonnegative at time
t = 0.

Theorem 1 Let us consider the initial data as F(0) ≥ 0, where
F(t) = (SH(t), EH(t), IA(t), IH(t), TH(t), PH(t),
RH(t), SR(t), IR(t), SV(t), IV(t)). Then the solutions F(t) of model (1)
are nonnegative for all time t > 0. Furthermore,

lim sup
t→∞

NH(t) ≤
ΛH
�ℎ

,
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lim sup
t→∞

NR(t) ≤
ΛR
�r
,

lim sup
t→∞

NV(t) ≤
ΛV
�v

.

Proof: Please see Appendix A.
Invariant region

The model (1) will be analyzed in a biologically-feasible region
as follows. Consider the feasible region

Γ = ΓH × ΓR × ΓV ⊂ R7+ × R2+ × R2+

with,

ΓH = {(SH(t), EH(t), IA(t), IH(t), TH(t), PH(t), RH(t)) ∶ NH ≤ ΛH
�ℎ

},

ΓR = {(SR(t), IR(t)) ∶ NR ≤
ΛR
�r
},

ΓV = {(SV(t), IV(t)) ∶ NR ≤
ΛV
�v

}.

Theorem 2 The region Γ = ΓH × ΓR × ΓV ⊂ R7+ × R2+ × R2+ is
positively invariant for the basic model (1) with non-negative initial
conditions in R11+ .

Proof: Please see Appendix B.

3. MODEL ANALYSIS

3.1. Disease Free equilibrium and Basic Reproduction
number
The disease free equilibrium of the model (1) is given by:

E0 = (ΛH
�ℎ

, 0, 0, 0, 0, 0, 0, ΛR
�r
, 0, ΛV

�v
, 0).

Next, we apply the next-generation operator method ([23]) to
determine R0 from system (1).

The basic reproduction number,ℛ0 is given byℛ0 = �(FV−1) =
ℛ0H + ℛ0R (details can be found in Appendix D),
where, ℛ0H = AC and ℛ0R = BC,

A = a0c
ek2[
(
ℎ + �ℎ)(1 − f1) + f1
ℎ�1

Dn

+ f1�1
(
e + �ℎ)(
ℎ + �ℎ)

+ f1
ℎ�2(�1 + � + �ℎ)
Dn(�2 + � + �ℎ)

+
(1 − �)�1�p{(
ℎ + �ℎ)(1 − f1) + f1
ℎ�1}

Dn(�2 + � + �ℎ)(�p + �ℎ)
],

Dn = (
e + �ℎ)(
ℎ + �ℎ)(�1 + � + �ℎ),

B = a0ck2�2
k1�r

, C = a0b
�v

.

The epidemiological implication of the �nding above is that,
regardless of the original prevalence of infection, the disease
will be eradicated from the population if R0 < 1. The possible
interpretation for ℛ0H and ℛ0R as the number of secondary
infections caused by an infectious sand �y. We note that R0 is the
weighted average of the basic reproduction numbers of reservoir
and human populations. The balance of each species’ competence
to transmit infection weighted by their corresponding population
density will determine disease evolution.

Theorem 3 The disease-free equilibrium is locally asymptotically
stable ifℛ0 < 1 and unstable ifℛ0 > 1 ([24]).

3.2. Endemic equilibria

From (1), we get that
S∗H = ΛH

�ℎ+�∗H (1−F)
; E∗H = �∗HS

∗
H

l1
; I∗A = �∗HS

∗
H l2

l1l3
; I∗H = �∗HS

∗
H (l3l4+l2l5)

l1l3l6
;

T∗H = �∗HS
∗
H (l3l4+l2l5)l7
l1l3l6l8

; P∗H = �∗HS
∗
H {(l3l4+l2l5)l7�p+l2l6l8l9}

l1l3l6l8l10
; R∗H = �∗HF;

S∗R =
ΛR

�r+�∗R
; I∗R =

ΛR�∗R
(�r+�∗R)�r

; S∗V =
ΛV

�v+�∗V
; I∗V =

ΛV�∗V
(�v+�∗V )�v

;

where �∗H = a0bI∗V
N∗
H

; �∗R =
a0bI∗V
N∗
R
; �∗V = �1a0c

I∗A
N∗
H
+ a0c

I∗H
N∗
H
+ a0c

P∗H
N∗
H
+

�2a0c
I∗R
N∗
R
;

l1 = (
e + �ℎ), l2 = f1
e, l3 = (
ℎ + �ℎ), l4 = (1 − f1)
e, l5 =
�1
ℎ, l6 = (�1 + � + �ℎ), l7 = (1 − �)�1, l8 = (�p + �ℎ), l9 =
�2
ℎ, l10 = (�2 + � + �ℎ), F = �3
ℎI∗A+��1I

∗
H+(�2+�)P

∗
H

�ℎ+�r
.

Now, �∗H
�∗R

= N∗
R

N∗
H
implies that �∗R = �∗HZ(�∗H), where Z(�∗H) =

(ΛH−�I∗H )�r
ΛR�ℎ

.

Also, �∗V = �1a0c
I∗A
N∗
H
+ a0c

I∗H
N∗
H
+ a0c

P∗H
N∗
H
+ �2a0c

I∗R
N∗
R
;

So, we can write, �∗V =
�∗HG

1+H�∗H
+ �2a0c�∗R

�∗R+�r

where, �∗HG = �1a0c
�∗HS

∗
H l2

l1l3
+ +a0c

�∗HS
∗
H (l3l4+l2l5)

l1l3l6
+

a0c
�∗HS

∗
H {(l3l4+l2l5)l7�p+l2l6l8l9}

l1l3l6l8l10
, N∗

H = S∗H(1 + H�∗H).

So, we get, �∗V = �∗HU(�∗H), where, U(�∗H) =
G

1+H�∗H
+ �2a0c�∗HZ(�

∗
H )

�∗HZ(�
∗
H )+�r

.

Substituting I∗V in �∗V and �∗H we get,

H�∗V
2 + �∗VA + B = 0

where,A = H�v+U(�∗H)−(1−F)
ΛVa0b
ΛH�v

, B = U(�∗H)(�v−
ΛVa0b�ℎ
ΛH�v

).
We can obtain the positive equilibrium of the system (1) by

solving the above equations. An interesting observation is that
if the conditions B > 0,A < 0 and A2 − 4BH > 0 hold, then the
system has two positive equilibrium points. However, if B < 0 or
A2 − 4BH = 0 or B = 0,A < 0 these conditions hold, then the
system (1) tends to have a unique equilibrium point.

3.3. Existence of backward bifurcation

When R0 < 1, we can observe the stable endemic equilibrium
point and a stable disease-free equilibrium point exhibiting
backward bifurcation. It is interesting to check the similar
behaviour for our model (1).

Theorem 4 The system (1) undergoes backward bifurcation at
R0 = 1 whenever the bifurcation coe�cient, a, is positive (as b > 0
always).

In order for R0 < 1, the phenomenon of backward bifurcation
has serious public health implications; therefore, it is no longer
su�cient for e�ective control (or elimination) of the disease. In
this type of a case of (backward bifurcation) situation, the original
sizes of the subpopulations compartments of our model (state
variables) will determine the e�ectiveness of disease control or
elimination. We will then attempt to determine the value of the
bifurcation parameters a & b.
To study the possibility of backward bifurcation, we use the

centre manifold theorem ([25, 26]), mainly we use the theorem
in Castillo-Chavez and Song ([26]).
For the case when ℛ0 = 1, and we assume that a0 = � is selected
to be the bifurcation parameter, then the Jacobian matrix of the
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system (1) at the disease-free equilibrium point is given as follows:

J� =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−�ℎ 0 0 0 0 0 �r 0 0 0 −y1
0 −y2 0 0 0 0 0 0 0 0 y1
0 y3 −y4 0 0 0 0 0 0 0 0
0 y5 y6 −y7 0 0 0 0 0 0 0
0 0 0 y8 −y9 0 0 0 0 0 0
0 0 y10 0 �p −y11 0 0 0 0 0
0 0 y12 y13 0 y14 −y15 0 0 0 0
0 0 0 0 0 0 0 −�r 0 0 −y17
0 0 0 0 0 0 0 0 −�r 0 y17
0 0 −y18 −y19 0 −y20 0 0 −y21 −�v 0
0 0 y18 y19 0 y20 0 0 y21 0 −�v

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where,y1 = �b, y2 = (
e + �ℎ), y3 = f1
e, y4 = (
ℎ + �ℎ), y5 =
(1 − f1)
e, y6 = �1
ℎ, y7 = �1 + � + �ℎ, y8 = (1 − �)�1, y9 =
�p+�ℎ, y10 = �2
ℎ, y11 = �2+�+�ℎ, y12 = �3
ℎ, y13 = ��1, y14 =
�2 + �, y15 = (�r + �ℎ), y17 = �b N∗

R
N∗
H+N

∗
R
, y18 = �1�c

N∗
v

N∗
H
, y19 =

�c N
∗
v

N∗
H
, y20 = �c N

∗
v

N∗
H
, y21 = �c�2

N∗
v

N∗
R
, N∗

v =
ΛV
�v
, N∗

H = ΛH
�ℎ
, N∗

R =
ΛR
�r
.

Calculation of the eigenvectors of J�: It can be shown that
the Jacobin of the system (1) has a right eigenvector given by
W = (w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11)T , where

w1 = y1w11 − �rw7
�ℎ

= H1(w11)

w2 = y1
y2
w11

w3 = y3
y4
w2 = H2(w11)

w4 = y5w2 + y6w3
y7

= H3(w11)

w5 = y8
y9
w4 = H4(w11)

w6 =
y10w3 + �pw5

y11
= H5(w11)

w7 = y12w3 + y13w4 + y14w6
y15

= H6(w11)

w8 = −y17
�r

w11

w9 = −w8

w10 = −w11

w11 = (y18w3 + y19w4 + y20w6 + y21w9)
�v

= H7(w11)

(2)

and a left eigenvector given by V =
(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11), where

v1 = v7 = v8 = v10 = 0

v2 = y3v3 + y5v4
y2

= G1(v11)

v3 = y6v4 + y18v11
y4

= G2(v11)

v4 = y8v5 + v11y19
y7

= G3(v11)

v5 =
�pv6
y9

= G4(v11)

v6 = y20
y11

v11

v9 = y21
�r
v11

v11 = v11

Computation of a and b: After some tedious calculations, it can

0 200 400 600 800 1000

Time

0

100

200

300

400

I
H

initial value (a)

initial value (b)

initial value (c)

initial value (d)

Figure 1. Existence of backward bifurcation for the model (1).

be shown that

a∗ = X − Y
X = v11w10[

a0c�1w3 + a0cw4 + a0cw6
N∗
H

+ a0c�2w9
N∗
R

]

Y = v11(
7∑

i=1
wi)

a0cN∗
v

(N∗
H)2

(w3�1 + w4 + w6) + v2w11
a0b
N∗
H
(
7∑

i=2
wi)

+ v11w9�2
a0cN∗

v (w8 + w9)
(N∗

R)2
+ v9w11w9

a0b
N∗
R

and

b∗ = b(v2w11 + +v9w11)

+ cv11[(w3�1 + w4 + w6)
N∗
v

N∗
H
+ �2w9]

N∗
v

N∗
R

Figure (1) con�rms the presence of backward bifurcation in the
model (1). Figure (1) shows a time-series plot with di�erent
initial conditions convergent to both the disease-free equilibrium
(DFE) and an endemic equilibrium point (EEP) when R0 =
0.88 < 1. The initial values with IH(0) > 0 converges to
endemic equilibriumpoint (EEP), otherwise it will converge to the
disease-free equilibrium (DFE). Parameter values used are : Πℎ =
160, �ℎ = 0.002, �r = 0.25, �2 = .001,�1 = 0.03, 
ℎ = 0.02, � =
0.84, f1 = 0.98, b = 0.40, �1 = 0.002, �3 = 1 − �1 − �2, k1 =
0.60, k2 = 2, c = 0.07, 
e = 0.01, �v = 0.06,Πv = 200,Πr =
75, �p = 0.0016, � = 0.011, �2 = 0.006, � = .002, �2 = 1, �1 =
1, �r = 0.065.

4. MODEL CALIBRATION

In this subsection, �rst, the author calibrates the model (1) to
yearly incidence data of Visceral Leishmaniasis in South Sudan
([27]). The estimated parameters are b, f1, k1, k2, and c. (Refer
to the Appendix E section for more details).
Figure (2) illustrates the �tting of the model (1) for the

cumulative reported new VL cases. Tables 1 and 2 consist
of the values of the estimated model parameters. In South
Sudan, observing the estimated initial values of various infected
human compartments (see Table 2) reveals that the epidemic
was already widespread among the population when the data
were obtained (January 2011). With a 95% con�dence interval,
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Figure 2. Plots of the observed cumulative data and the out put of the
�tted model (1). Cumulative new VL cases (blue star) from the data, and
model simulated data (thick black curve) are plotted with the parameter
estimates using parameter values and initial conditions from Table 1 and
Table 2 for the time period ( 1st January 2011 - 31st December 2011).
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Figure 3. Plot of the PRCC over time of the model (1). The PRCC is
calculated with respect to R0 with signi�cant level 0.05, using 10000
samples.

the estimated value of transmission probability that accounts
for human susceptibility to infection is 0.20 on average. The
primary reproduction number’s estimated value is 3.91 (with a
95% con�dence interval).

4.1. Sensitivity analysis
Latin Hypercube Sampling (LHS) method in combination with
Partial Rank Correlation Coe�cient (PRCC) multivariate analysis
([28], [29], [30]) were used to do the sensitivity analysis for the
model (1) on 2000 random parameter samples. A useful method
for predicting the nonlinear but monotonic connection between
input and model result is PRCC. The estimated parameters in
Section (4) serve as the inputs. The parameters’ minimum and
maximum values are shown in Table 2. When determining the
value of R0, the most crucial parameters are b, f, �r, c, and �v
(See Figure (3)). A positive value of the PRCC score implies that
increasing that particular parameter will increase the value of R0.
In contrast, a negative value shows that decreasing that parameter
R0 also tends to decline.

Table 1. Parameter description, values, posterior summary and
sources of model (1).

Para. Description Value Range Source
ΛH Constant

recruitment rate of
Human

�HNH(0)
day−1

– [21]

�H Death rate of
Human

5.64 × 10−5
day−1

– [31]

ΛR Constant
recruitment rate of
Reservoir

�RNR(0)
day−1

– [6]

�R Death rate of
Reservoir

0.0017 day−1 – [10]

ΛV Constant
recruitment rate of
Sand�y

�VNV(0)
day−1

– [6]

�V Death rate of
Sand�y

0.0668 day−1 – [6]

� Death rate due to
VL

0.011 day−1 – [32]

1∕�p Duration until
relapse to PKDL
stage

630 days – [6]

�2 Treatment rate in
PKDL stage

0.033 day−1 – [33]

� Natural recovery
rate from PKDL
stage

0.002 day−1 – [34]

1∕�r Period before
recovered
humans becoming
susceptible again

0.0032 day−1 – [6]

�1 Fraction developing
symptomatic KA

0.01 [0.01, 0.02] [6]

�2 Fraction developing
PKDL

10−4 [10−4, 2 ×
10−4]

[6]

�3 Fraction recovering 1 − �1 − �2 – –
� Proportion moving

from KA to
recovery

0.84 [0.80, 0.90] [6]

�2 Infection
probability of
sand�y biting
reservoir

1 – Assumed

a0 Average biting rate
of sand�ies

0.20 day−1 [0.15, 0.3] [6]

�1 Treatment rate of
VL in symptomatic
KA stage

0.03 day−1 [0.01, 0.04] [6]

1∕
e Sojourn time in the
exposed class

0.01526
day−1

[0.01,
0.025]

[6]

1∕
ℎ Sojourn time in the
asymptomatic KA
stage

0.068 day−1 [0.01, 0.02] [6]

b Transmission
probability in
human and
reservoir

0.205 [0.12, 0.40] Estimated

f1 Fraction of exposed
humans developing
asymptomatic KA

0.92 [0.85, 0.99] Estimated

c Transmission
probability in
sand�y population

0.07 [0.01, 0.2] Estimated

k1 Reservoir per
human

0.60 [0.4, 1] Estimated

k2 Sand�y per human 1.25 [0.6, 2] Estimated
R0 Basic reproduction

number
3.91 – Estimated
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5. THE OPTIMAL CONTROL PROBLEM

Some intervention strategies, like the use of treated bed nets,
vaccination of the human population, the e�ective treatment of
infected persons with antibiotics, and the culling of reservoirs,
are some measures the author includes in this section to decrease
the spread of visceral leishmaniasis infection. We should include
vaccination as a control technique in VL mathematical modelling
since it can be employed as a crucial strategy to lower the
prevalence of VL. The control functions thatwe have used here are,
u1, u2, u3, u4 and u5, which respectively represent time-dependent
e�orts of bednets, vaccination, treatment of symptomatic KA
patients, treatment of PKDL patients and culling of reservoirs.
The controls are practised over a time interval of [0; tf].

System of nonlinear di�erential equations representing the
e�ect of di�erent interventions on the basic model (1), is given as
follows:

S′H = ΛH − a0bIV
SH
NH

(1 − u1(t)) − �ℎSH + �rRℎ − u2�2SH

E′H = a0bIV
SH
NH

(1 − u1(t)) − (
e + �ℎ)EH

I′A = f1
eEH − (
ℎ + �ℎ)IA
I′H = (1 − f1)
eEH + �1
ℎIA − (u3(t) + � + �ℎ)IH
T′H = (1 − �)u3(t)IH − (�p + �ℎ)TH
P′H = �2
ℎIA + �pTH − (u4(t) + � + �ℎ)PH
R′H = �3
ℎIA + �u3(t)IH + (u4(t) + �)PH + u2�2SH

−�rRℎ − �ℎRH

S′R = ΛR − a0bIV
SR
NR

− (�r + u5(t))SR (3)

I′R = a0bIV
SR
NR

− (�r + u5(t))IR

S′V = ΛV − (�1a0cSV
IA
NH

+ a0cSV
IH
NH

+ a0cSV
PH
NH

)(1 − u1(t))

−�2a0cSV
IR
NR

− �vSV

I′V = (�1a0cSV
IA
NH

+ a0cSV
IH
NH

+ a0cSV
PH
NH

)(1 − u1(t))

+�2a0cSV
IR
NR

− �vIV

The initial conditions being SH(0), EH(0), IA(0), IH(0), TH(0),
PH(0), RH(0), SR(0), IR(0), SV(0), IV(0) and the above model
parameters are listed in Table 1 and Table 2 . The controls
u1(t), u2(t), u3(t), u4(t) and u5(t) for our model are bounded and
Lebesgue integrable functions.
The control problem involves minimizing the number of

infected individuals with Visceral leishmaniasis subject to the
system (3). The objective function for our model that has to be
minimized is de�ned in the following manner:

J(u1, u2,⋯ , u5) =
tf
∫
0
(A1IA(t) + A2IH(t) + A3PH(t) + A4IR(t)

+ 1
2
Bu21 +

1
2
Cu22 +

1
2
Du23 +

1
2
Eu24 +

1
2
Fu25)dt;

subject to the state equation (3).
Here tf is the �nal time and A1, A2, A3 and A4 are

weight constants of the IA, IH , PH , IR group, respectively. In
contrast, B, C, D, E, and F are weight constants for bed nets,
vaccination, treatment (for IH , PH) and culling e�orts, respectively,

which regularize the optimal control. We assume no linear
relationship exists between these interventions’ coverage and their
corresponding costs. The weight constants play a signi�cant role
in balancing the infectious individuals and cost terms according
to their size and importance. These weight constants might be
di�erent for di�erent countries or scenarios. We choose the
baseline weight constants as Table (3) for simplicity.

The author searches for the optimal controls u∗1(t), u∗2(t), u∗3(t),
u∗4(t) and u∗5(t) such that

J(u∗1 , u∗2 ,⋯ , u∗5) = min{J(u1, u2,⋯ , u5); (u1, u2,⋯ , u5) ∈ U}

where U = {(u1(t), u2(t),⋯ , u5(t)); (u1(t), u2(t),⋯ , u5(t))
measurable, ai ≤ ui(t) ≤ bi , i = 1, 2, 3, 4, 5, t ∈ [0, tf]} is the
control set.

Table 2. Demographic parameters description, values and
posterior summary.

Demog.
Param.

Description Lower Upper Source/
value

NH(0) Total human
population

1.05×107 1.05×107 [31]

SH(0) Susceptible humans 0.80NH(0) 0.90NH(0) 8.15×106
EH(0) Latent humans 0.085NH(0) 0.10NH(0) 8.75×105
IH(0) Symptomatic KA 0.80C(0) 0.88C(0) 1040
PH(0) PKDL population 0.08C(0) 0.12C(0) 96
RH(0) Immune humans 0.08NH(0) 0.10NH(0) 9.10×105
IV(0) Infected sand�ies 0 0.0002NV(0) 1790
IR(0) Infected reservoirs 0 0.0004NR(0) 1250

Table 3. Computational parameters values
Comp. parameter Symbol Value Source
Final time tf 100 days Assumed
Upper bound u1 b1 1 Assumed
Lower bound u1 a1 0 Assumed
Upper bound u2 b2 1 Assumed
Lower bound u2 a2 0 Assumed
Upper bound u3 b3 1 Assumed
Lower bound u3 a3 0 Assumed
Upper bound u4 b4 1 Assumed
Lower bound u4 a4 0 Assumed
Upper bound u5 b5 1 Assumed
Lower bound u5 a5 0 Assumed
Weight u1 B 1 Assumed
Weight u2 C 1 Assumed
Weight u3 D 1 Assumed
Weight u4 E 1 Assumed
Weight u5 F 1 Assumed

5.1. Analysis of the Optimal Control Problem
The conditions that an optimal control must satisfy come from
Pontryagin’s Maximum Principle. The Hamiltonian H, with
respect to u1, u2, u3, u4 and u5 can be written as:

H = (A1IA(t) + A2IH(t) + A3PH(t) + A4IR(t) +
1
2Bu

2
1 +

1
2Cu

2
2

+ 1
2Du

2
3 +

1
2Eu

2
4 +

1
2Fu

2
5) +

11∑

i=1
�igi (4)

where gi is the right-hand side of the di�erential equation of the
itℎ state variable and �i are the adjoint variables. By applying
Pontryagin’sMaximumPrinciple, one can get the following result:
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Proposition 1. An optimal control exists given by, u∗1 , u∗2 , u∗3 ,
u∗4 and u∗5 and corresponding solution, S∗H ,E∗H , I∗A, I

∗
H , T∗H , P∗H ,

R∗H , S∗R , I∗R , S∗V and I∗V , that minimizes the objective function
J(u1,u2,u3, u4, u5) over U. Furthermore, there exist adjoint functions,
�1(t),�2(t),...,�11(t) such that:

)�1
)t = (a0b

IV
NH

(1 − u1(t))(1 −
SH
NH

))(�1 − �2) + �ℎ�1 + u2�2(�1 − �7)

− (�10 − �11)(1 − u1(t))(�1a0cSV
IA
NH2

+ a0cSV
IH
NH2

+ a0cSV
PH
NH2

)

)�2
)t = �2(�ℎ + 
e) − a0b

IVSH
NH2

(1 − u1(t))(�1 − �2) − 
e(f1�3 + (1 − f1)�4)

− (�10 − �11)(1 − u1(t))(�1a0cSV
IA
NH2

+ a0cSV
IH
NH2

+ a0cSV
PH
NH2

)

)�3
)t = −A1 + �3(�ℎ + 
ℎ) − 
ℎ(�1�4 + �2�5 + �3�6) + (�1a0c

SV
NH

(�10 − �11)(1 − u1(t)))

− (�10 − �11)(1 − u1(t))(�1a0cSV
IA
NH2

+ a0cSV
IH
NH2

+ a0cSV
PH
NH2

)

− a0b
IVSH
NH2

(1 − u1(t))(�1 − �2)

)�4
)t = −A2 + (u3(t) + �ℎ + �)�4 − u3(t)((1 − �)�5 + ��7) + a0c

SV
NH

(�10 − �11)(1 − u1(t))

− (�10 − �11)(1 − u1(t))(�1a0cSV
IA
NH2

+ a0cSV
IH
NH2

+ a0cSV
PH
NH2

)

− a0b
IVSH
NH2

(1 − u1(t))(�1 − �2)

)�5
)t = (�p + �ℎ)�5 − �p�6 − (�10 − �11)(1 − u1(t))(�1a0cSV

IA
NH2

+ a0cSV
IH
NH2

+ a0cSV
PH
NH2

) − a0b
IVSH
NH2

(1 − u1(t))(�1 − �2)

)�6
)t = −A3 + (u4(t) + � + �ℎ)�6 − (u4(t) + �)�7 + a0c

SV
NH

(�10 − �11)(1 − u1(t))

− (�10 − �11)(1 − u1(t))(�1a0cSV
IA
NH2

+ a0cSV
IH
NH2

+ a0cSV
PH
NH2

)

− a0b
IVSH
NH2

(1 − u1(t))(�1 − �2)

)�7
)t = (�ℎ + �r)�7 − �r�1 − (�10 − �11)(1 − u1(t))(�1a0cSV

IA
NH2

+ a0cSV
IH
NH2

+ a0cSV
PH
NH2

) − a0b
IVSH
NH2

(1 − u1(t))(�1 − �2)

)�8
)t = a0b

IV
NR

(1 − SR
NR

)(�8 − �9) + (�r + u5(t))�8 − �2a0c
SV IR
NR2

(�10 − �11)

)�9
)t = −A4 + (�r + u5(t))�9 − a0b

IVSR
NR2

(�8 − �9) − �2a0c
SV IR
NR2

(�10 − �11)

+ �2a0c
SV
NR

(�10 − �11)

)�10
)t = {(�1a0c

IA
NH

+ a0c
PH
NH

+ a0c
IH
NH

)(1 − u1(t)) + �2a0c
IR
NR

}(�10 − �11) + (�v )�10

)�11
)t = a0b

SH
NH

(1 − u1(t))(�1 − �2) + a0b
SR
NR

(�8 − �9) + (�v )�11 (5)

with transversality conditions

�i(tf) = 0, i = 1, 2, ..., 11. (6)

u∗1 = min {b1, max [a1,
(�2 − �1)a0bIVSH +NHUn

NHB
]}

u∗2 = min {b2, max [a2,
(�1 − �7)�2SH

C ]}

u∗3 = min {b3, max [a3,
(�4 − (1 − �)�5 − ��7)IH

D ]}

u∗4 = min {b4, max [a4,
(�6 − �7)PH

E ]}

u∗5 = min {b5, max [a5,
(�8SR + �9IR)

F ]}

wℎere UN = (�1a0c
IASV
NH

+ a0c
PHSV
NH

+ a0c
IHSV
NH

)(�11 − �10).
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Figure 4. Optimal solutions for the model (3) showing the e�ect of the
optimal treatment.

6. NUMERICAL SIMULATION

In the following section, the author discusses the simulation
results for the optimal control of di�erent parameters. The values
for the parameters used are given in Table 1, Table 2, and the
other computational parameters are given in Table 3.

The author considers �ve scenarios: optimal treatment control,
optimal vaccination control, optimal treated bed net policy,
optimal culling policy, and all the controls as �rst, second, third,
fourth, and �fth, respectively.

We observe the following scenario:

6.1. First scenario
With this strategy, only treatment u3u4 has been employed to
optimize the objective function J. The sum of susceptible with
the recovered population (SH + RH) increases (Figure (4)(a)) and
asymptomatic KA (IA) (Figure (4)(b)), symptomatic KA+ PKDL
(IH + PH) (Figure (4)(c)), infected reservoirs (IR) (Figure (4)(d))
decreases signi�cantly. At t = 100 days, the di�erences between
optimal treatment control and no control for SH + RH , IA, IH +
PKDL and IR are respectively 0.8×106; 0.9×105; 3.2×104and2.8×
104 (see Figure (4)). According to the control pro�le depicted in
Figure (4)(e), we can conclude that the control u3u4 should be
at a maximum level for 98 days. This strategy suggests optimal
preventive strategies against VL in a community. At the same time,
an adequate treatment regime is not put in place simultaneously
and would not be a practical approach to control the disease at
the �nal time.

6.2. Second scenario
With this scenario, only vaccination u2 is used to optimize the
objective function J. The infected human and reservoir population
dynamics do not tend to exhibit any signi�cant e�ect under the use
of this control strategy. We can observe this in (Figure (5)(c) and
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Figure 5. Optimal solutions for the model (3) showing the e�ect of the
optimal vaccination.

(d)). This may be connected to the fact that treatment of infected
individuals is neglected, and as a result, the disease persists in the
community. However, a notable fact lies in the inference that on
employing this control mechanism, the Susceptible + Reservoir
population increases by 0.5×106 (Figure (5)(a)) and asymptomatic
KA (IA) infected population decreases (Figure (5)(b)). The optimal
vaccination pro�le is displayed in Figure (5)(e), where we can
observe that for 72 days, the optimal vaccination policy is 100%.
This scenario suggests that high levels of vaccine e�cacywould be
required to reduce the equilibrium prevalence of VL signi�cantly.
Vaccination rates impact the transient dynamics through the rate
of reduction of cases but ultimately have little role in long-term
prevalence where new cases are continuously imported.

6.3. Third scenario

The author considers only bed net control u1 in the third scenario.
It can be observed in Figure (6)(a), (b), (c) and (d) that SH + RH
increase, IA, IH + PKDL and IR decreases signi�cantly. Figure
(6)(e) shows the optimal treated bed net policy pro�le. To decrease
VL infection, bed net should be used at 100% intensively for almost
100 days.

6.4. Fourth scenario

Here, we employ the optimal culling e�ect u5 for optimization
of the objective function J while keeping the other controls at
a constant value of zero. Small di�erences can be observed for
SH + RH (Figure (7)(a)), Asymptomatic humans (Figure (7)(b))
and IH+ PKDL (Figure (7)(c)) cases but u5 can eliminate the
infected reservoirs from the society (Figure (7)(d)). Figure (7)(e)
depicts that u5 should be at around 100% for the �rst 12 days
before dropping slowly to the lower bound on the 99th day. This
shows that the e�ective and optimal use of the culling e�ect on
the reservoirs in controlling VL does not bene�t the community
in the long run.
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Figure 6. Optimal solutions for the model (3) showing the e�ect of the
optimal treated bednet.

6.5. Fifth scenario

This approach aims to optimize the objective function J by
implementing all available control measures. As shown in Figure
(8), the application of the control strategy leads to a consistent
decline in all infected compartments over time, whereas in the
absence of controls, infection levels increase. The strategy also
e�ectively reduces the number of asymptomatic human cases.
The treatment controls (u3 and u4) remain at 100% e�ectiveness
for the majority of the period. In comparison, the usage of bed
nets (u2) and vaccination (u1) begins at 100% but steadily declines
to their minimum levels within 98 days. Meanwhile, the culling
control (u5) starts at approximately 22% and gradually decreases
to its lower bound by day 99. This suggests that, under the optimal
strategy, the culling of reservoirs requires relativelyminimal e�ort.

7. CONCLUSION

Authors of [21] discussed a general non-autonomous
anthroponotic visceral leishmaniasis model that considers
the human (infected compartments divided into symptomatic,
asymptomatic, PKDL-infected classes) dog and sand �y
populations and probes further to investigate the e�cacy of
various control strategies. However, in this article, we modi�ed
their model as humans stay latent for an average period of 1


e
days, and became either asymptomatic, IA, or symptomatic, IH ,
with probabilities f1 and 1 − f1, respectively. We mathematically
analysed the model to derive the basic reproduction number R0,
and estimated the value for the year 2011. Visceral leishmaniasis
or Kala-Azar is one of themost severely neglected tropical diseases
perceived by the World Health Organization (WHO). The danger
of this debilitating disease persists due to the inaccessibility of
promising treatment or human immunization. Broad research
is going on to build up a promising vaccine to prevent this
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Figure 7. Optimal solutions for the model (3) showing the e�ect of the
optimal culling e�ect.

0 20 40 60 80 100
8.8

9

9.2

9.4

9.6

9.8

10
x 10

6

time (days)

R
e
c
o
v
e
re

d
 H

u
m

a
n
 P

o
p
u
la

ti
o
n
 +

 S
u
s
c
e
p
ti
b
le

 H
u
m

a
n
 P

o
p
u
la

ti
o
n

 

 

Optimal Control

Without Control

0 20 40 60 80 100
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

5

time (days)

A
s
y
m

p
to

m
a
ti
c
 K

A

 

 

Optimal Control

Without Control

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

time (days)

S
y
m

p
to

m
a
ti
c
 K

A
 +

 P
K

D
L
 i
n
fe

c
te

d
 H

u
m

a
n

 P
o
p
u

la
ti
o
n

 

 

Optimal Control

Without Control

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

time (days)

In
fe

c
te

d
 R

e
s
e
rv

o
ir
 P

o
p
u
la

ti
o
n

 

 

Optimal Control

Without Control

0 20 40 60 80 100
0

0.5

1

1.5

time (days)

C
o

n
tr

o
l 
P

ro
fi
le

 

 

u
3

u
2

u
1

u
4

u
5

Figure 8. Optimal solutions for the model (3) showing the e�ect of the
optimal control policy.

devastating disease [35, 36]. The signi�cant job can be played by
vaccination for preventing the span of the disease. In this article,
we considered four types of control, i.e., use of treated bednets,
vaccination, treatment of infective, and culling e�ect of reservoirs
(authors of [21] did not consider vaccination and culling e�ect)
to discuss the optimal use of control scenarios. Optimal control
policy proposes that combining the mass treatment, vaccination,
bed net, and culling e�ect give superior and productive outcomes
for diminishing VL prevalence. However, we �nd that mass
treatment is vital instead of other prevention strategies during
the outbreak of VL, and the optimal use of only culling e�ect to
the reservoirs is not bene�cial to the society for the control of VL.
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10. APPENDICES

10.1. Appendix A. Proof of Theorem 1

Following the frame work of ([37]), let t1 = sup{t > 0 ∶ F(t) > 0}.
From the 1st equation of the model (1), we get that

S′H ≥ ΛH − Λ(IV , NH)SH − �ℎSH

which can be rewritten as

d
dt {SH(t)exp[∫

t1

0
Λ(IV , NH)du + �ℎ(t)]}

≥ ΛHexp[∫
t1

0
+Λ(IV , NH)du + �ℎ(t)]

So that,

SH(t1)exp[∫
t1

0
Λ(IV , NH)du + �ℎ(t)] − SH(0)

≥ ΛHexp[∫
t1

0
+Λ(IV , NH)du + �ℎ(t)].

Hence, SH(t1) > 0.
Similarly it can be shown that F > 0 if t1 > 0.
Next, we observe that 0 < SH(t) ≤ NH(t), 0 < EH(t) ≤ NH(t), 0 <
IA(t) ≤ NH(t), 0 < IH(t) ≤ NH(t), 0 < TH(t) ≤ NH(t), 0 <
PH(t) ≤ NH(t), 0 < RH(t) ≤ NH(t). Now,

N′
H = ΛH − �ℎNH − �IH

Thus,
ΛH − �ℎNH ≥ N′

H ≥ ΛH − (�ℎ + �)NH .

Hence,

ΛH

(�ℎ + �)
≤ lim inf

t→∞
NH(t) ≤ lim sup

t→∞
NH(t) ≤

ΛH
�ℎ

,
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as required. Similarly,

ΛR

(�r)
≤ lim inf

t→∞
NR(t) ≤ lim sup

t→∞
NR(t) ≤

ΛR
�r
,

and ΛV

(�v)
≤ lim inf

t→∞
NV(t) ≤ lim sup

t→∞
NV(t) ≤

ΛV
�v

.

10.2. Appendix B. Proof of Theorem 2

We observe that,

N′
H = ΛH − �ℎNH − �IH

N′
R = ΛR − �rNR

N′
V = ΛV − �vNV

Using standard comparison theorem, it can be shown that
NH(t) ≤ NH(0)e−�ℎt + (1 − �ℎt)

ΛH
�ℎ
, in particular NH(t) ≤

ΛH
�ℎ

if

NH(0) ≤
ΛH
�ℎ
.

Similarly, NR(t) ≤ NR(0)e−�r t + (1 − �rt)
ΛR
�r
, in particular

NR(t) ≤
ΛR
�r

if NR(0) ≤
ΛR
�r

and

NV(t) ≤ NV(0)e−�v t + (1 − �vt)
ΛV
�v
, in particular NV(t) ≤

ΛV
�v

if

NV(0) ≤
ΛV
�v
.

Thus, the region Γ is positively invariant. Hence, it is su�cient
to consider the dynamics of the �ow generated by (1) in Γ. In
this region, the model is epidemiologically and mathematically
well-posed. Thus, every solution of the model (1) with initial
conditions in Γ remains in Γ for all t > 0. Therefore, the Γ-limit
sets of the system (1) are contained in Γ.

10.3. Appendix C. Proof of Theorem 3

Using Theorem (3) in [38], we can rewrite the system (1) in the
form

dX
dt = F(X, Z)

dZ
dt = G(X, Z), G(X, 0) = 0 (7)

where the components of the column-vector X ∈ Rm denotes the
number of uninfected individuals and the components of vector
Z ∈ Rn denote the number of infected individuals.
For the system (1),

X = (SH , RH , SR, SV)
Z = (EH , IA, IH , TH , PH , IR, IV) (8)

F(X, 0) = (ΛH − �ℎSH + �rRH , −(�r + �ℎ)RH ,
ΛR − �rSR, ΛV − �vSV)T

A = −V

And the column-vector Ĝ(X, Z) is given by

Ĝ(X, Z) = (a0bIV (1 −
SH
NH

) 0 0 0 a0bIV (1 −
SR
NR

)

�1a0cIA (1 −
SV
NH

) + a0c(IH + PH) (1 −
SV
NH

)

+�2a0cIR (1 −
SV
NR

) )
T

(9)

it is clear that Ĝ(X, Z) > 0, therefore from ([38]), we get the result.

10.4. Appendix D. Basic Reproduction Number Calculation
De�ne ℱ as the column-vector of rates of the appearance of new
infections in each compartment; V = V+ + V−, where V+ is the
column-vector of rates of transfer of individuals into the particular
compartment; and V− is the column-vector of rates of transfer of
individuals out of the particular compartment. The matrices F
and V can be calculated from the partial derivatives of ℱ and V
with respect to the infected classes computed at the DFE.

From the model (1),

ℱ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0bIV
SH
NH

0
0
0
0

a0bIV
SR
NR

�1a0cSV
IA
NH

+ a0cSV (
IH+PH
NH

) + �2a0cSV
IR
NR

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
e + �ℎ)EH
(
ℎ + �ℎ)IA − f1
eEH

(�1 + � + �ℎ)IH − (1 − f1)
eEH − �1
ℎIA
(�p + �H)TH − (1 − �)�1IH

(�2 + � + �ℎ)PH − �2
ℎIA − �pTH
�rIR
�vIV

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then the matrices F and V from the partial derivatives of ℱ and
V with respect to the infected classes computed at the DFE are
given by

F =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 a0b
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 a0b
0 �1a0cm a0cm 0 a0cm �2a0cn 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

V =

⎛
⎜
⎜
⎜
⎝


e + �ℎ 0 0 0 0 0 0
−f1
e 
ℎ + �ℎ 0 0 0 0 0

−(1 − f1)
e −�1
ℎ �1 + � + �ℎ 0 0 0 0
0 0 −(1 − �)�1 �p + �H 0 0 0
0 −�2
ℎ 0 −�p �2 + � + �ℎ 0 0
0 0 0 0 0 �r 0
0 0 0 0 0 0 �v

⎞
⎟
⎟
⎟
⎠

10.5. Appendix E. Details about the Model calibration
The initial human demographic parameters SH(0), EH(0), IH(0),
PH(0), TH(0), RH(0) as well as initial infected reservoir population
IR(0), initial infected sand�y population IV(0) are also estimated.
It is assumed that IA(0) = NH(0)−SH(0)−EH(0)−IH(0)−TH(0)−
PH(0) − RH(0) and TH(0) = C(0) − IH(0) − PH(0) .

The carrying capacity (NV) of the sand�y population is assumed
to be a multiple of the total human population at the beginning
i.e. NV(0) = k2 × NH(0), where k2 is the total number of sand�y
per human.
Similarly, initially NR(0) = k1 × NH(0) , where k1 is the total

number of reservoir per human. The author estimates k1 and k2
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from the given data of Visceral Leishmaniasis. Initial susceptible
sand�y population SV(0) = NV(0) − IV(0) and initial susceptible
reservoir population SR(0) = NR(0) − IR(0).

The author adds an extra compartment to the model (1), to
calculate the cumulative number of new noti�ed VL infections
IC , by

dIC
dt = (1 − f1)
eEH + �1
ℎIA + (1 − �)�1IH + �pTH + �2
ℎIA

which is the rate of new case. The numerical solutions of the
above equation with the model (1) give the predicted monthly
cumulative VL incidence. Here, IC(0)= number of new noti�ed
cases at the �rst time point of the data (C(0)).
The sum of the squared error between the model and data

should be minimized, which is given by

RSS = Σni=1(zi − gi(ti , �̂))2,

where zi is the cumulative VL data, and gi(ti , �̂) = IC(ti , �̂) + �,
� ∼ N(0, I�2) where ti = 0, 31, ..., 365 days, and � be the error of
�t, which follows an independent Gaussian distribution having
unknown variance �2. MCMC tool box in MATLAB written by
Marko Laine ([39]) was used to estimate the unknown �̂ for the
model (1). Geweke’s Z-scores ([40]) were used to ensure the
chain convergence.
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