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Abstract

The use of fractional derivatives in predator–prey models naturally accounts for memory effects, reflecting the fact that population
interactions are influenced not only by present conditions but also by their historical states. By incorporating memory through fractional-
order operators, these models provide a more realistic description of ecological dynamics and reveal how past population levels can
significantly affect stability, persistence, and complex behaviors of predator–prey systems over time. In this paper, following fractional
order Caputo derivative approach, here I first convert the integer order three species food chain model to the fractional order model. Some
qualitative behaviors of the system like existence and uniqueness, non-negativity and boundedness which are systematically discussed in
a feasible region. Local stability criteria of the different equilibrium points have been discussed for fractional order system. Global stability
of the interior equilibrium point have been only discussed by defining suitable Lyapunov function. Numerical simulation is performed for
different sets of biologically feasible parameter values by using adams-type predictor corrector method (PECE). Numerically it has been
observed that the fractional order system shows more complex dynamics, like chaos, bifurcation for lower memory as the fractional order
becomes larger and shows more simpler dynamics for higher memory as the order m decreases. Specially, due to memory effect, it
becomes stable for lower value of m and the dynamics of the fractional-order system not only depends on system parameters but also
depends on fractional order m.
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1. INTRODUCTION

Fractional-order integrals and derivatives have wide applications
in various �elds of science and engineering like physics, chemistry,
biology, mathematical sciences and engineering [1–5]. The major
reason behind using fractional derivatives is that it has the unique
property of capturing the history of the variable, that is, it has
memory [6, 7]. Generally, when the output of a system at each
time t depends only on the input at time t, such systems are
usually known as memory-less system. On the other side, when
the system has to remember previous values of the input in
order to determine the current value of the output, such systems
are known as non-memory less systems, or memory systems
[7, 8]. Researchers consider the e�ect of recent memory as
more important than the e�ect of older memory [9] and such
memory e�ect can not be obtained by the help of integer order
derivatives [10, 11]. Therefore, it has been successfully observed
the in�uence of memory concepts on several dynamical systems
[8, 12]. It has been recently used in ecological models [13–20]
and also in epidemiological models [21, 22]. Generally in past,

the study of dynamical systems is described with di�erential
equations where the derivatives were being of integer order. Now
by replacing the ordinary time derivative by a fractional order time
derivative, a time correlation function or memory kernel appears
and therefore the state of the system becomes dependent on all
its past states. Therefore, it has been observed that the derivatives
with arbitrary order, as introduced by Caputo [23], is a popular
choice in modeling real-world systems. The main advantage of
using Caputo fractional derivative [23] is that Caputo derivative
allows for the use of traditional , making it more intuitive to use
in dynamical systems [15, 23]. Any one can observe that in the
de�nition of Caputo fractional derivative, the time correlation
function is a power-law function, which has more impact to
show the memory e�ect on dynamical system. To understand
the physical interpretation of Caputo fractional derivative deeply,
let us recall the de�nition of Caputo fractional derivative c

0D
m
t of

orderm de�ned for an arbitrary function f(t) as follows [23]

c
0D

m
t f(t) =

1
Γ(n − m)

∫
t

0

f(n)(�)
(t − �)m−n+1

d�, n − 1 ≤ m < n, (1)
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where n is an integer, m is a real number. In (1), if 0 < m < 1
then we can rewrite the equation as follows

c
0D

m
t f(t) =

1
Γ(1 − m)

∫
t

0

f(1)(�)
(t − �)m

d� = ∫
t

0
w(t − �)f(1)(�)d�,

(2)
where

w(t) = t−m

Γ(1 − m)
, 0 < m < 1, (3)

is the weight function or memory kernel whose task is the storage
of system memory over time t [23]. Following (3), I note that
the strength of memory is controlled by the order of fractional
derivativem. Whenm → 1, memory of the system decreases and
the system tends toward amemory-less system andmemory of the
system increases with smallerm. Next, I plot the memory kernel
functionw(t) (Power-law function) with respect to t inw−t plane
for di�erent fractional orderm (0 < m < 1).

Figure 1. Visualizations of the behavior of the memory kernel function
w(t) (Power function) with respect to t in w − t plane has been presented
for di�erent fractional order m (0 < m < 1) and also for integer order
m = 1.

Since the decaying rate of this type of memory kernel occurring
in Caputo fractional derivative depends on fractional order m
and it is increasing with the decreasing of fractional order m,
thus Caputo fractional derivative is widely used to study the
memory e�ect of fractional order model. Therefore the Caputo
fractional derivative, involving a convolution integral with a
power-law memory kernel, are useful to describe memory e�ects
in dynamical systems.

In population models, chaos is especially intriguing for
researchers as it explains how simple biological interactions
can lead to complex, irregular, and unpredictable �uctuations
in species densities over time. After a fascinating research by
May [24], exploring the chaotic behaviors in population models
became a fascination for many researchers in recent times. Lots
of mathematical models have been proposed on the basis of food-
chain and analyzed to show complicated dynamics like chaos,
bifurcation etc. [25–31]. Aziz-Alaoui [32] discussed the complex
dynamics in a modi�ed Leslie-Gower three species food chain
model with Holling type II response function. Again, Alidousti
and Ghahfarokhi [6] extended the work of Aziz-Alaoui [32] and

analyzed the following fractional order tri-trophic food chain
model with Holling type II functional response. Sambath in [33]
also studied the asymptotic behavior of a fractional order three
species predator-prey model with the same functional response.
In recent past, Saeedian et.al. [21] studied the evolution of the
fractional order SIR epidemic model by considering memory
e�ects. Using the fractional calculus technique, Saeedian et.al.
shown that the dynamics of such a system depends on the strength
of memory e�ects, controlled by the order of fractional derivatives.
Investigation about the in�uence of memory e�ect in a fractional
order Leslie-Gower type model with Holling type IV functional
response is relatively less studied in population ecology. Therefore,
in this paper, I consider a three species food chain model with
simpli�ed Holling type IV functional response to understand
underlying dynamics of the model with memory e�ect respect to
fractional order.
Here, I consider an integer order three species food chain

model which was studied by Ali et. al. [34]. They actually
investigated the following three-dimension coupled nonlinear
autonomous system of integer order di�erential equations with
non-monotone functional response (also called simpli�ed Holling
type IV functional response) to understand the underlying
dynamics of food chain model:

dX
dT

= a0X − b0X2 −
v0XY
d1 + X2 , X(0) ≥ 0,

dY
dT

= −a1Y +
v1XY
d1 + X2 −

v2YZ
d2 + Y

, Y(0) ≥ 0, (4)

dZ
dT

= Z(c3Z −
v3Z

d3 + Y
), Z(0) ≥ 0,

where X,Y, Z are, respectively, the densities of prey, intermediate
predator and top predator at any instant of at time T. This
model considers interactions between a generalist top predator,
specialist middle predator, and prey. Here, the specialist middle
predator is consumed by the top predator, at a Holling type II rate.
The interactions between the specialist middle predator and prey
are modeled via a modi�ed Holling type IV functional response.
The interaction between the generalist top predator and specialist
middle predator follow a modi�ed Leslie-Gower scheme. That
is the generalist top predator grows quadratically, because of
sexual reproduction as c3Z2, and loses because of intra-species
competition as − v3Z2

d3+Y
. The d3 signi�es that Z is a generalist. The

biological interpretation of all the parameters are described in the
following table.

Table 1. Parameter interpretation
Symbol Meaning
a0 Growth rate of prey
b0 Intra speci�c competition coe�cient
vi′s Maximum values that per-capita rate can attain
d1 Measure of protection level provided by the environment to the prey
a1 Death rate of intermediate predator
d2 Half-Saturation constant
c3 Growth rate of top predator via sexual reproduction
d3 Residual loss of top predator due to severe scarcity of it’s favorite prey, Y

All parameters are non-zero positive. For description of the
model and system parameters, readers are referred to [32, 34].
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The rest of this paper is organized as follows: in Section
2, following fractional order Caputo derivative approach, I
convert the integer order di�erential equations of the three
species predator-prey model (4) to the fractional order di�erential
equations, thereby allowing us to consider memory e�ects.
Mathematical results related to qualitative behaviors of the system
(10) like existence, uniqueness, non-negativity and boundedness
will be investigated systematically in Section 3. In section 4,
Local stability criteria of all feasible equilibrium points have
been discussed for fractional order system. Global stability of
the interior equilibrium point have been only discussed here.
Using parameter values, numerically it has been observed that
the fractional order system (10) shows more complex dynamics,
like chaos, bifurcation for lower memory as the fractional order
becomes larger and shows more simpler dynamics for higher
memory as the orderm decreases. Specially, due tomemory e�ect,
it becomes stable for lower value ofm. Simulation results are also
given to validate the analytical results in Section 5 .

2. Memorial Process from Integer order system to
Fractional order system

To observe the in�uence of memory e�ect, �rst I rewrite the
equation (4) in terms of time-dependent integral as [34]:

dX
dT

= ∫
T

0
w(T − �) (a0X(�) − b0X2(�) −

v0X(�)Y(�)
X2(�) + d0

) d�,

dY
dT

= ∫
T

0
w(T − �) (

v1X(�)Y(�)
X2(�) + d1

− a1Y(�) −
v2Y(�)Z(�)
Y(�) + d2

) d�,

dZ
dT

= ∫
T

0
w(T − �) (c3Z2(�) −

v3Z2(�)
Y(�) + d3

) d�, (5)

in which w(T − �) plays the role of time-dependent kernel. A
power-law function is a suitable choice to explain the long-term
memory e�ects which exhibits a slow decay such that the state of
the system at quite early times also contributes to the evolution
of the system. This type of kernel ensures the existence of
memory e�ect whenever a system contains the fractional order
derivative. Thus, to generate the fractional order model I consider
the following power-law correlation function for w(T − �):

w(T − �) = 1
Γ(m − 1)

(T − �)(m−2), 0 < m < 1, (6)

in which Γ(x) is the well known gamma function. Note that Γ(x)
is well de�ned for negative non-integer values [23]. The choice
of such kernel allow us to rewrite the equation (5) to the form
of fractional di�erential equations with Caputo-type derivative.
Now this kernel is substituted into the �rst equation of (5) and I
get

dX

dT
= ∫ T

0
(T−�)(m−2)

Γ(m−1)
(a0X(�) − b0X2(�) − v0X(�)Y(�)

X2(�)+d0
) d�,

DX(T) =0 I
(m−1)
T [a0X(�) − b0X2(�) − v0X(�)Y(�)

X2(�)+d0
], (7)

where D ≡ d

dT
is the integer order di�erential operator and

0I
(m−1)
T is the fractional integral of order (m − 1) on the interval

[0, T]. Next I apply a Caputo fractional derivative of order (m−1)
on both sides of (7) which is denoted by c

0D
(m−1)
T and I observe

c
0D

(m−1)
T D X(T) =

c
0D

(m−1)
T 0I

(m−1)
T [a0X(�) − b0X2(�) −

v0X(�)Y(�)
X2(�) + d0

]. (8)

Now using the fact that the Caputo fractional derivative
and fractional integral are inverse operators [7], i.e., for some
di�erentiable function f(t), c0D

n
t 0Int f = f, for any real n ≥ 0, I

obtain the following fractional di�erential equation from (8)

c
0D

m
T X(T) = a0X(T) − b0X2(T) −

v0X(T)Y(T)
X2(T) + d0

.

Similarly one can obtain from the last two equations of (5)

c
0D

m
T Y(T) =

v1X(T)Y(T)
X2(T) + d1

− a1Y(T) −
v2Y(T)Z(T)
Y(T) + d2

,

c
0D

m
T Z(T) = c3Z2(T) −

v3Z2(�)
Y(T) + d3

.

Therefore our integer order model (4) reduces to fractional order
model

c
0D

m
T X = a0X − b0X2 −

v0XY
d1 + X2 ,

c
0D

m
T Y = −a1Y +

v1XY
d1 + X2 −

v2YZ
d2 + Y

, (9)

c
0D

m
T Z = Z(c3Z −

v3Z
d3 + Y

).

For simple mathematical calculation, I use the following
transformations

X =
a0
b0
x, Y =

a20
b0v0

y, Z =
a30

b0v0v2
z, T = t

a0
,

the system (9) takes the simpli�ed form

c
0D

m
t x = x(1 − x) −

sxy
x2 + a

, x(0) = x0 ≥ 0,

c
0D

m
t y =

cxy
x2 + a

− by −
yz
y + d

, y(0) = y0 ≥ 0, (10)

c
0D

m
t z = pz2 −

qz2

y + r , z(0) = z0 ≥ 0,

where

a =
b20d1
a20

, b =
a1
a0
, c =

b0v1
a20

, d =
d2v0b0
a20

, p =
c3a20
b0v0v2

,

q =
v3
v2
, r =

d3v0b0
a20

, s =
b0
a0
.

with the initial conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, where
c
0D

m
t is the Caputo fractional derivative of orderm. The state space

of the system (10) is the positive cone ℝ3
+ = {(x, y, z) ∈ ℝ3 ∶ x ≥

0, y ≥ 0, z ≥ 0}.

3. Existence, non-negativity and boundedness

Here I study the existence and uniqueness of the solution of our
system (10) �rst in this section. In recent years, some researchers
proved the positivity of solutions before discussing the existence
and uniqueness of a dynamical system [35]. Ghani et. al. [36]

Applied Mathematical Biosystems 12
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also established boundedness of solutions even before proving
the existence and non-negativity of it. Roy et. al. [37] followed a
systematical apporach in their reaserch work and they proved the
existence and uniqueness of the solutions �rst while establishing
qualitative behaviour of solutions of a system. Later, they
discussed about non-negativity, boundedness and positivity of
the solutions which I �nd more interesting fact than the previous
studies. In a similar manner, I shall also follow a systematic order
to establish the existence and uniqueness of solutions of themodel
(10), followed by non-negativity, boundedness which makes this
section more interesting compared to other existing literature.

3.1. Existence and uniqueness

To study the existence and uniqueness of the solution of our
system (10), I have the following Lemma due to Li et al [38].

Lemma 1 [38] Consider the system

c
t0D

m
t x(t) = f(t, x), t > t0

with initial condition xt0 , where 0 < m ≤ 1, f ∶ [t0,∞) × A → ℝn ,
A ∈ ℝn. If f(t, x) satis�es the locally Lipschitz condition with
respect to x then there exists a unique solution of the above system
on [t0,∞) × A.

Using Lemma (1), here I study the existence and uniqueness
of the solution of system (10) in the region A × [0, T1], where
A = {(x, y, z) ∈ ℝ3| max{|x|, |y|, |z|} ≤ M1}, T1 < ∞ andM1 is
large. Denote X = (x, y, z), X̄ = (x̄, ȳ, z̄). Consider a mapping
H ∶ A → ℝ3 such thatH(X) = (H1(X),H2(X),H3(X)), where

H1(X) = x(1 − x) −
sxy
x2 + a

,

H2(X) =
cxy
x2 + a

− by −
yz
y + d

, (11)

H3(x) = pz2 −
qz2

y + r .

For any X, X̄ ∈ A, it follows from (11) that

∥ H(X) − H(X̄) ∥
=∣ H1(X) − H1(X̄) ∣ + ∣ H2(X) − H2(X̄) ∣
+ ∣ H3(X) − H3(X̄) ∣

= ∣ x(1 − x) −
sxy
x2 + a

− x̄(1 − x̄) +
sx̄ȳ
x̄2 + a

∣

+ ∣
cxy
x2 + a

− by −
yz
y + d

−
cx̄ȳ
x̄2 + a

+ bȳ +
ȳz̄
ȳ + d

∣

+ ∣ pz2 −
qz2

y + r − pz̄2 +
qz̄2

ȳ + r ∣

= ∣ (x − x̄) − (x2 − x̄2) − s(
xy
x + a −

x̄ȳ
x̄ + a ) ∣

+ ∣ c(
xy
x + a −

x̄ȳ
x̄ + a ) − b(y − ȳ) − (

yz
y + d

−
ȳz̄
ȳ + d

) ∣

+ ∣ p(z2 − z̄2) − q( z2

y + r −
z̄2

ȳ + r ) ∣

≤∣ x − x̄ ∣ + ∣ x2 − x̄2 ∣

+ (s + c) ∣ (
xy
x + a −

x̄ȳ
x̄ + a ) ∣ +b ∣ y − ȳ ∣

+ ∣
yz
y + d

−
ȳz̄
ȳ + d

∣ +p ∣ z2 − z̄2 ∣ +q ∣ ( z2

y + r −
z̄2

ȳ + r ) ∣

≤∣ x − x̄ ∣ +2M1 ∣ x − x̄ ∣ +
(s + c)
a2

∣ a(xy − x̄ȳ)

+ xx̄(y − ȳ) ∣ +b ∣ y − ȳ ∣ + 1
d2

∣ d(yz − ȳz̄) + yȳ(z − z̄) ∣

+ p ∣ z2 − z̄2 ∣ +
q
r2
∣ r(z2 − z2) + (z2ȳ − z̄2y) ∣

≤ (1 + 2M1 +
M1(s + c)

a ) ∣ x − x̄ ∣

+ (M1(
s + c
a + 1

d
) + b +M2

1(
(s + c)
a2

+
q
r2
)) ∣ y − ȳ ∣

+ (M1(2p +
1
d
+
2q
r ) + M2

1(
1
d2

+
2q
r2
)) ∣ z − z̄ ∣

≤ L ∥ (x, y, z) − (x̄, ȳ, z̄) ∥
≤ L ∥ X − X̄ ∥,

where L = max{1 + 2M1 +
M1(s+c)

a
,M1(

s+c

a
+ 1

d
) + b +M2

1(
(s+c)

a2
+

q

r2
),M1(2p +

1

d
+ 2q

r
) + M2

1(
1

d2
+ 2q

r2
)}.

Thus H(X) satis�es Lipschitz condition with respect to X and
following Lemma (1), there exists a unique solution X(t) of the
system (10) with the initial condition X(0) = (x(0), y(0), z(0)).

3.2. Non-negativity

Considering the biological signi�cance of the model, I am only
interested in solutions that are non-negative and bounded in the
region ℝ3

+ = {(x, y, z) ∈ ℝ3 ∶ x ≥ 0, y ≥ 0, z ≥ 0}. To prove the
non-negativity and uniform boundedness of our system, I shall
use the following lemmas.

Lemma 2 [39] Suppose thatf(t) ∈ C[a, b] andDm
a f(t) ∈ C(a, b]

with 0 < m ≤ 1. The Generalized Mean Value Theorem states that

f(t) = f(a) + 1
Γ(m)

(Dm
a f)(�).(t − a)m,

where a ≤ � ≤ t, ∀t ∈ (a, b].

Lemma 3 [40] Let u(t) be a continuous function on [t0,∞) and
satisfying

c
t0D

m
t u(t) ≤ −�u(t) + �,

u(t0) = ut0 ,

where 0 < m ≤ 1, (�, �) ∈ ℝ2, � ≠ 0 and t0 ≥ 0 is the initial time.
Then its solution has the form

u(t) ≤ (ut0 −
�
�
)Em[−�(t − t0)m] +

�
�
.

We have the following existence results on initial value problem
(IVP) with caputo type fractional order di�erential equations.

Lemma 4 [41] Consider the initial value problem (IVP) with
caputo type FDE

c
t0D

m
t x(t) = f(t, x(t)), x(0) = x0 (12)

wheref ∈ C([0, T]×ℝ,ℝ), 0 < m < 1. Assume thatf ∈ C(R0, R),
where R0 = [(t, x) ∶ 0 ≤ t ≤ a, ∣ x−x0 ∣≤ b] and let ∣ f(t, x) ∣≤ N
on R0. Then there exists at least one solution for the IVP (12) on

0 ≤ t ≤ 
 where 
 = min(a, [ b

M
Γ(m + 1)]

1
m ), 0 < m < 1.
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Lemma 5 [41] Consider the initial value problem (IVP) given by
(12). Let

g(v, x∗(v)) = f(t−(tm−vΓ(m + 1))
1
m , x(t−(tm−vΓ(m + 1))

1
m ))

and assume that the conditions of lemma (4) hold. Then, a solution
of (12), is given by

x(t) = x∗(
tm

Γ(m + 1)
)

where x∗(v) is the solution of the integer order di�erential equation

d(x∗(v))
dv

= g(v, x∗(v))

with the initial condition x∗(0) = x0.

Theorem 1 All the solutions of system (10) which start inℝ3
+ are

non-negative.

Proof: First I show that the solutions x(t) ∈ ℝ3
+ are non negative

if it starts with positive initial values. If not, then there exists a
t1 > 0 such that

x(t) > 0, 0 ≤ t < t1,
x(t) = 0, t = t1, (13)
x(t+1 ) < 0.

Using (13) in the �rst equation of (10), we have

c
0D

m
t x(t)|t=t1 = 0. (14)

According to Lemma (2), I have x(t+1 ) = 0, which contradicts the
fact x(t+1 ) < 0. Therefore, I have x(t) ≥ 0, ∀ t ≥ 0. Using similar
arguments, one can prove y(t) ≥ 0, ∀t ≥ 0 and z(t) ≥ 0, ∀t ≥ 0.
So, it is proven that all the solutions of system (10) which start in
ℝ3
+ are non negative.

3.3. Boundedness
Next I will show that, under some assumptions, all solutions
x(t), y(t) and z(t) of our system (10) are uniformly bounded for
su�ciently large t.

Theorem 2 All the non negative solutions of system (10) which are
initiating inℝ3

+ are uniformly bounded, provided

� +
�
4b

+ r <
q
p (15)

and ultimately entering the region

Ω = {(x, y, z) ∈ ℝ3
+ ∶ 0 ≤ x ≤ 1, 0 ≤ x +

y
�
≤ 1 + 1

4b
,

0 ≤ x +
y
�
+ �z ≤ 1 + 1

4b
+ M

b
},

where

� =
v1
a0
, � = 1

b2(� + �

4b
+ r)

, M = 1

4(q − (� + �

4b
+ r)p)

.

Proof: (i) Let (x(0), y(0), z(0)) ∈ Ω and from the following
Theorem (1), (x(t) , y(t), z(t)) remain non negative in ℝ3

+, then I
will show that (x(t), y(t), z(t)) ∈ Ω, ∀t ≥ 0 and ∀m ∈ (0, 1]. Now

to reach our main objective, I have to prove the following steps
for all t ≥ 0 and ∀m ∈ (0, 1],
Step (i-a): x(t) ≤ 1;
Step (i-b): x(t) + y(t)

�
≤ 1 + 1

4b
;

Step (i-c): x(t) + y(t)

�
+ �z(t) ≤ 1 + 1

4b
+ M

b
.

Proof of Step (i-a): I �rst prove that x(t) ≤ 1, ∀t ≥ 0 and
∀m ∈ (0, 1]. Since x ≥ 0, y ≥ 0, z ≥ 0 in ℝ3

+, then any solution
�(t) = (x(t), y(t), z(t)) of (10), which starts in ℝ3

+, must satisfy
the fractional order di�erential inequation

c
0D

m
t x ≤ x(1 − x), x(0) = x0 > 0,m ∈ (0, 1], (16)

which is clearly obtained from the �rst equation of (10). Moreover,
this equation (16) represents a fractional order logistic equation.
Now I can apply Lemma (5) to solve this fractional order
di�erential inequation (16). Here

g(v, x∗(v)) = x∗(v)(1 − x∗(v))

Then corresponding integer order di�erential in-equation of this
fractional IVP (16) is

d(x∗(v))
dv

≤ x∗(v)(1 − x∗(v)), x∗(0) = x0.

The solution of this integer order linear IVP is

x∗(v) ≤
1

1 + c1e−v
,

where c1 = 1

x0
− 1. Consequently, the solution of the given

fractional order IVP (16) is

x(t) = x∗(
tm

Γ(m + 1)
) ≤ 1

1 + c1e
− tm

Γ(m+1)

≤ 1, ∀t ≥ 0, 0 < m ≤ 1.

Then any solution x(t) of (16) must be bounded by 1 with
respect to any fractional order m ∈ (0, 1]. Therefore, it
follows that any non negative solution �(t) of (10) satis�es
x(t) ≤ 1, ∀t ≥ 0 and ∀m ∈ (0, 1].

Proof of Step (i-b): I now prove that x(t)+ y(t)

�
≤ 1+ 1

4b
, ∀t ≥ 0

and ∀m ∈ (0, 1]. Let us de�ne a function

V1(t) = x(t) +
y(t)
�
, (17)

Taking fractional time derivative, I have

c
0D

m
t V1(t) = c

0D
m
t x(t) +

c
0D

m
t
y(t)
�

= x(1 − x) − b
�
y − 1

�
yz
y + d

.

Since all parameters are positive and solutions initiating in ℝ3
+

then,

c
0D

m
t V1(t) ≤x(1 − x) − b

�
y,

c
0D

m
t V1(t) ≤x(1 − x) + bx − b(x +

y
�
),

c
0D

m
t V1(t)+bV1(t) ≤ b + 1

4 ,

since inΩ, 0 ≤ x ≤ 1 andmax[0,1]x(1−x) =
1

4
. Applying Lemma
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(3), I have

V1(t) ≤ (V1(0) − (1 + 1
4b
))Em[−btm] + (1 + 1

4b
),

= V1(0)Em[−btm] + (1 + 1
4b
)(1 − Em[−btm]).

(18)

For t → ∞, we thus have V1(t) → (1 + 1

4b
). Therefore, V1(t) ≤

(1 + 1

4b
), ∀t ≥ 0 and ∀m ∈ (0, 1]. Hence it follows that any non

negative solution of (10) satis�es x(t) + y(t)

�
≤ 1 + 1

4b
, ∀t ≥ 0 and

∀m ∈ (0, 1].

Proof of Step (i-c): I �nally prove that x(t) + y(t)

�
+ �z(t) ≤

1 + 1

4b
+ M

b
, ∀t ≥ 0 and ∀m ∈ (0, 1] holds, with

� = 1

b2(� + �

4b
+ r)

, M = 1

4(q − (� + �

4b
+ r)p)

,

provided � + �

4b
+ r < q

p
. Again I de�ne a function

V2(t) = x(t) +
y(t)
�

+ �z(t), (19)

Taking fractional order time derivative, I have

c
0D

m
t V2(t) =c

0D
m
t x(t) +

c
0 D

m
t
y(t)
�

+c
0 D

m
t �z(t),

=x(1 − x) − b
�
y − 1

�
yz
y + d

+ �(p −
q

y + r )z
2.

Similarly to the previous step (i-b), since all parameters are
positive, all solutions initiating in Int(ℝ3

+) remain non negative
and in Ω, 0 ≤ x ≤ 1,max[0,1]x(1 − x) = 1

4
, y ≤ � + �

4b
, I get

c
0D

m
t V2(t) ≤

1

4
+ b − bV2(t) + �bz + �(p − q

y+r
)z2,

c
0D

m
t V2(t) ≤

1

4
+ b − bV2(t) + �bz + �(p − q

�+ �
4b
+r
)z2,

c
0D

m
t V2(t)+ bV2(t) ≤ b + 1

4
+M, (20)

where,

M = maxz∈ℝ+(�bz + �(p −
q

� + �

4b
+ r

)z2).

Now I intend to �ndM, the maxima for the function f(z) =
�bz+�(p− q

�+ �
4b
+r
)z2, z ∈ ℝ+. Heref′(z) = �b+2�z(p− q

�+ �
4b
+r
)

and f′′(z) = 2�(p − q

�+ �
4b
+r
). Since � + �

4b
+ r < q

p
, I observe

f′′(z) < 0 and hencemax[f(z)] exists at

z = b
2( q

�+ �
4b
+r
− p)

= z1(say).

Therefore using � = 1

b2(�+ �
4b
+r)

, I have

M = max[f(z)] ∣z=z1=
�b2(� + �

4b
+ r)

4(q − (� + �

4b
+ r)p)

= 1

4(q − (� + �

4b
+ r)p)

.

(21)

Then applying Lemma (3) on (20), I have

V2(t) ≤ (V2(0) − (1 + 1
4b

+ M
b
))Em[−btm] + (1 + 1

4b
+ M

b
),

= V2(0)Em[−btm] + (1 + 1
4b

+ M
b
)(1 − Em[−btm]).

(22)

For t → ∞, we thus have V2(t) → (1 + 1

4b
+ M

b
). Therefore,

V2(t) ≤ (1 + 1

4b
+ M

b
), ∀t ≥ 0 and ∀m ∈ (0, 1]. Hence it follows

that any non negative solution of (10) satis�es for allm ∈ (0, 1],

x(t) +
y(t)
�

+ 1

b2(� + �

4b
+ r)

z(t)

≤ 1 + 1
4b

+ 1
b

1

4(q − (� + �

4b
+ r)p)

, ∀t ≥ 0.

Therefore, all the non negative solutions x(t), y(t), z(t) of
system (10) initiating in ℝ3

+ are uniformly bounded and entering
the set Ω, ∀t ≥ 0 and ∀m ∈ (0, 1].

4. Existence and stability of equilibria

I have the following stability result on fractional order dynamical
systems.

Theorem 3 [20, 42, 43] Consider the following fractional order
system

c
0D

m
t x(t) = f(x), x(0) = x0

with 0 < m < 1, x ∈ ℝn and f ∶ ℝn → ℝn. The equilibrium
points of the above system are calculated by solving the equation:
f(x) = 0. These equilibrium points are locally asymptotically stable
if all eigenvalues �i of the Jacobin matrix J = )f

)x
evaluated at the

equilibrium points satisfy ∣ Arg(�i) ∣>
m�

2
, i = 1, 2, ......x, n.

An equilibrium point of system (10) is found by solving the three
equations Dm

t x(t) = Dm
t y(t) = Dm

t z(t) = 0 in (10). There
are four biologically feasible non-negative equilibrium points
of system (10). The trivial equilibrium E0 = (0, 0, 0) and the
axial equilibrium E1 = (1, 0, 0) are always exist. The planner
equilibrium point E2 = (x̄, ȳ, 0) exists uniquely in the positive
quadrant of xy− plane, where x̄ and ȳ are given by

x̄ = c
2b
, ȳ = 1

s (1 − x̄)(a + x̄2),

provided that the following conditions are hold:

c
2b

< 1, c2 − 4ab2 = 0. (23)

I observe that in the absence of prey x, both predators y and z can
not survive. So there is no equilibrium point in the yz− plane.
Similarly I can also conclude that there is no equilibrium point
in xz− plane. Now there exists a unique interior equilibrium
point E∗ = (x∗, y∗, z∗) of the system (3), where the equilibrium
population densities are given by

y∗ =
q
p − r, (24)

while x∗ is the positive root of the cubic equation

x3 − x2 + ax + (sy∗ − a) = 0, (25)
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this equation can be written as

f(x) = Ax3 + Bx2 + Cx + D = 0, (26)

where A = 1, B = −1, C = a and D = (sy∗ − a). Now since
0 ≤ x∗ ≤ 1, then f(0) = D < 0, if y∗ < a

s
and f(1) = sy∗ > 0.

Thus, f(0)f(1) = sy∗(sy∗ − a) < 0, and then there is a positive
root of equation (26) lies in (0, 1) when y∗ < a

s
is satis�ed. Now

from the second equation of system (10), I obtain

z∗ = (−b + cx∗

a + x∗2
)(y∗ + d), (27)

and it exists if b < cx∗

a+x∗2
. Therefore the positivity condition of E∗

in ℝ3
+ are

y∗ < a
s , b <

cx∗

a + x∗2
,

where v3 > c3d3. Di�erent stability results for the equilibrium
points E0, E1, E2 and E∗ are given in the following.

Now to investigate the dynamical behavior of the equilibrium
points Ei , (i = 0, 1, 2) and E∗, I �rst construct the Jacobian matrix
J evaluated at an equilibrium point (x, y, z) of the system (10) is

J(x, y, z) =
⎛
⎜
⎜
⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎟
⎟
⎠

, (28)

where a11 = 1 − 2x − sy(a−x2)

(a+x2)2
, a12 = − sx

a+x2
, a13 = 0, a21 =

cy(a−x2)

(a+x2)2
,

a22 = −b + cx

a+x2
− dz

(d+y)2
, a23 = − y

d+y
, a31 = 0, a32 =

qz2

(r+y)2
,

a33 = 2z(p − q

y+r
).

Then the Jacobianmatrices evaluated at E0, E1 and E2 are given
by

J(E0) =
⎛
⎜
⎜
⎝

1 0 0
0 −b 0
0 0 0

⎞
⎟
⎟
⎠

,

J(E1) =
⎛
⎜
⎜
⎝

−1 − s

a+1
0

0 −b + c

a+1
0

0 0 0

⎞
⎟
⎟
⎠

,

J(E2) =

⎛
⎜
⎜
⎜
⎝

1 − 2x̄ − (1−x̄)(a−x̄2)

a+x̄2
− sx̄

a+x̄2
0

c(1−x̄)(a−x̄2)

s(a+x̄2)
0 − ȳ

(d+ȳ)

0 0 0

⎞
⎟
⎟
⎟
⎠

.

Clearly, the eigenvalues of J(E0) are �1 = 1, �2 = −b and
�3 = 0. Note that Arg(�3) is unde�ned. Since one them is a
positive real and anothe one is a negative real, then E0 is always
unstable. Therefore E0 is non-hyperbolic.

Next, the eigenvalues of J(E1) are �1 = −1 (< 0), �2 =
c−b−ab

1+a
and �3 = 0. Hence E1 is also non-hyperbolic. Note that If
c − b > ab then �2 > 0. In this case, E1 is always unstable saddle
along x− direction. If c − b < ab then �2 < 0. Consequently, two
of the eigenvalues are negative real, so in this case E1 is stable
manifold along x and y− direction.

Again from the variationalmatrix ofE2, the eigenvalues of J(E2)
are �1,2 =

1

2
[P ±

√
P2 − 4Q], where P = 1 − 2x̄ − (1−x̄)(a−x̄2)

a+x̄2
, Q =

cx̄(1−x̄)(a−x̄2)

(a+x̄2)2
and �3 = 0. Since one of the eigenvalue �3 becomes

zero, so E2 is non-hyperbolic equilibrium point.

For local stability of the interior equilibrium E∗, I compute the
Jacobian matrix of system (10) at E∗ = (x∗, y∗, z∗) as

J(E∗) =

⎛
⎜
⎜
⎜
⎝

1 − 2x∗ − (1−x∗)(a−x∗2)

a+x∗2
− sx∗

a+x∗2
0

c(1−x∗)(a−x∗2)

s(a+x∗2)

y∗z∗

(y∗+d)2
− y∗

d+y∗

0 pz∗2

y∗+r
0

⎞
⎟
⎟
⎟
⎠

. (29)

The eigenvalues are the roots of the cubic equation

F(�) = �3 + A1�2 + A2� + A3 = 0, (30)

where A1 = −1 + 2x∗ + (1−x∗)(a−x∗2)

a+x∗2
− y∗z∗

(y∗+d)2
,

A2 =
y∗z∗

(y∗+d)2
(1−2x∗− (1−x∗)(a−x∗2)

a+x∗2
)+ cx∗(1−x∗)(a−x∗2)

(a+x∗2)2
+ py∗z∗2

(y∗+d)(y∗+r)
,

A3 = − py∗z∗2

(y∗+d)(y∗+r)
(1 − 2x∗ − (1−x∗)(a−x∗2)

a+x∗2
).

The equilibrium E∗ is said to be locally asymptotically stable if all
eigenvalues of (30) satisfy ∣ Arg(�i) ∣>

m�

2
, ∀m ∈ (0, 1], i = 1, 2, 3.

One can then determine the stability of E∗ by noting the signs of
the coe�cientsAi and discriminant D(F) of the cubic polynomial
F(�) [13, 44]. The discriminant D(F) of the cubic polynomial
F(�) is

D(F) = −

|||||||||||||||||||||

1 A1 A2 A3 0
0 1 A1 A2 A3

3 2A1 A2 0 0
0 3 2A1 A2 0
0 0 3 2A1 A2

|||||||||||||||||||||

= 18A1A2A3 + (A1A2)2 − 4A3A3
1 − 4A3

2 − 27A2
3

. Then the following theorem regarding local asymptotic stability
of E∗ of the system (10) is true [13, 20, 44].

Theorem 4 (i) IfD(F) > 0,A1 > 0,A3 > 0 andA1A2−A3 > 0
then the interior equilibrium E∗ is locally asymptotically stable
for allm ∈ (0, 1].

(ii) If D(F) < 0, A1 ≥ 0, A2 ≥ 0, A3 > 0 and 0 < m < 2

3
then the

interior equilibrium E∗ is locally asymptotically stable.
(iii) If D(F) < 0, A1 < 0, A2 < 0 and m > 2

3
then the interior

equilibrium E∗ is unstable.
(iv) If D(F) < 0, A1 > 0, A2 > 0, A1A2 = A3 and 0 < m < 1 then

the interior equilibrium E∗ is locally asymptotically stable.

Then, I proceed to prove the global stability results of the interior
equilibrium point E∗ = (x∗, y∗, z∗). The following lemma will be
used in proving it.

Lemma 6 [18] Let x(t) ∈ ℝ+ be a continuous and derivable
function. Then for any time instant t > t0

c
t0D

m
t [x(t)−x∗−x∗ln

x(t)
x∗ ] ≤ (1− x∗

x(t)
) c
t0D

m
t x(t), x∗ ∈ ℝ+, ∀m ∈ (0, 1].
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Theorem 5 The interior equilibrium E∗ = (x∗, y∗, z∗) of system
(10) is globally asymptotically stable for anym ∈ (0, 1] if

(i) 2sy∗

a(x∗2+a)
+ s

2a2
− 1 < 0,

(ii) cx∗−b(x∗2+a)

a�d
+ s

2a2
+ 1

2
( q

4br�(q−p(�+ �
4b
+r))

− x∗2+a

a�(�+ �
4b
+d)

) < 0,

(iii) q

4br�(q−p(�+ �
4b
+r))

− x∗2+a

a�(�+ �
4b
+d)

< 0,

where � = 1

b2(�+ �
4b
+r)

> 0.

Proof : Let us consider the Lyapunov function

V(x, y, z) = (x − x∗ − x∗ln xx∗ ) +
(x∗2 + a)

a�
(y − y∗ − y∗ln

y
y∗ )

+ (y∗ + r)(z − z∗ − z∗ln zz∗ ).

It is easy to see that V = 0 only at (x, y, z) = (x∗, y∗, z∗) and
V > 0 whenever (x, y, z) ≠ (x∗, y∗, z∗). Considering them − tℎ
order fractional derivative of V(x, y, z) along the solutions of (10),
I have

c
0D

m
t V(x, y, z) =

c
0D

m
t (x − x∗ − x∗ln xx∗ )

+
(x∗2 + a)

a�
c
0D

m
t (y − y∗ − y∗ln

y
y∗ )

+ (y∗ + r)c0D
m
t (z − z∗ − z∗ln zz∗ ).

Using Lemma (6) and making some algebraic manipulations, I
have
c
0D

m
t V(x, y, z)

≤
(x − x∗)

x
c
0D

m
t x(t) +

(x∗2 + a)
a�

(y − y∗)
y

c
0D

m
t y(t)

+ (y∗ + r)
(z − z∗)

z
c
0D

m
t z(t)

=(x − x∗)[(1 − x) −
sy

x2 + a
] +

(x∗2 + a)
a (y − y∗)

[ sx
x2 + a

− b
�
− z
�(d + y)

] + (y∗ + r)(z − z∗)[pz −
qz
y + r ]

=(x − x∗)[(x∗ − x) +
sy∗

x∗2 + a
−

sy
x2 + a

]

+
(x∗2 + a)

a (y − y∗)[ sx
x2 + a

− sx∗

x∗2 + a
+ z∗

�(d + y∗)
− z
�(d + y)

]

+ z(y∗ + r)(z − z∗)[
q

y∗ + r −
q

y + r ]

= − (x − x∗)2 + s(x − x∗)[
y∗(x2 + a) − y(x∗2 + a)

(x2 + a)(x∗2 + a)
]

+
(x∗2 + a)

a s(y − y∗)[
x(x∗2 + a) − x∗(x2 + a)

(x2 + a)(x∗2 + a)
]

+
(x∗2 + a)

a�
(y − y∗)[

d(z∗ − z) + {y∗(z∗ − z) + z∗(y − y∗)}
(y + d)(y∗ + d)

]

+
qz
y + r (y − y∗)(z − z∗)

≤[
sy∗(x + x∗)

(x2 + a)(x∗2 + a)
− 1](x − x∗)2 − sxx∗

a(x∗2 + a)
(x − x∗)(y − y∗)

+
(x∗2 + a)

a�
z∗(y − y∗)2

(y + d)(y∗ + d)

+ [
qz
y + r −

x∗2 + a
a�(y + d)

](y − y∗)(z − z∗)

≤[
2sy∗

a(x∗2 + a)
− 1](x − x∗)2 +

z∗(x∗2 + a)(y − y∗)2

a�d(y∗ + d)

+ sxx∗

a(x∗2 + a)
[
(x − x∗)2 + (y − y∗)2

2 ]

+[
q

4br�(q − p(� + �

4b
+ r))

− x∗2 + a

a�(� + �

4b
+ d)

]

[
(y − y∗)2 + (z − z∗)2

2 ]

≤[
2sy∗

a(x∗2 + a)
− 1](x − x∗)2 +

(cx∗ − b(x∗2 + a))
a�d

(y − y∗)2

+ s
a2
[
(x − x∗)2 + (y − y∗)2

2 ]

+[
q

4br�(q − p(� + �

4b
+ r))

− x∗2 + a

a�(� + �

4b
+ d)

][
(y − y∗)2 + (z − z∗)2

2 ]

=[
2sy∗

a(x∗2 + a)
+ s
2a2

− 1](x − x∗)2 + [
cx∗ − b(x∗2 + a)

a�d
+ s
2a2

+

1
2(

q

4br�(q − p(� + �

4b
+ r))

− x∗2 + a

a�(� + �

4b
+ d)

)](y − y∗)2

+ 1
2[

q

4br�(q − p(� + �

4b
+ r))

− x∗2 + a

a�(� + �

4b
+ d)

](z − z∗)2.

One can note that c0D
m
t V(x, y, z) ≤ 0, ∀(x, y, z) ∈ ℝ3

+ if each
coe�cient of (x−x∗)2, (y −y∗)2 and (z−z∗)2 are negative, giving
the conditions

(i)
2sy∗

a(x∗2 + a)
+ s
2a2

− 1 < 0,

(ii)
cx∗ − b(x∗2 + a)

a�d
+ s
2a2

+ 1
2(

q

4br�(q − p(� + �

4b
+ r))

− x∗2 + a

a�(� + �

4b
+ d)

) < 0,

(iii)
q

4br�(q − p(� + �

4b
+ r))

− x∗2 + a

a�(� + �

4b
+ d)

< 0.

Here c
0D

m
t V(x, y, z) = 0 implies that (x, y, z) = (x∗, y∗, z∗).

Therefore, the only invariant set on which c
0D

m
t V(x, y, z) = 0 is

the singleton set {E∗}. Then, using Lemma (4.6) in [19], it follows
that the interior equilibrium E∗ is global asymptotically stable for
anym ∈ (0, 1]. Hence the theorem is proven.

This global stability result is independent of fractional orderm
and it is also true for integer order (m = 1).

5. Numerical Simulations

In this section, I perform extensive numerical computations of
the fractional order system (9) for di�erent fractional values of
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m (0 < m < 1) and also for m = 1. I use Adams-type predictor
corrector method (PECE) for the numerical solution of system
(9). It is an e�ective method to give numerical solutions of both
linear and nonlinear FODE [45, 46]. I �rst replace our system (9)
by the following equivalent fractional integral equations:

X(T) = X(0) + D−m
T [a0X − b0X2 −

v0XY
d0 + X2 ],

Y(T) = Y(0) + D−m
T [−a1Y +

v1XY
d1 + X2 −

v2YZ
d2 + Y

], (31)

Z(T) = Z(0) + D−m
T [c3Z2 −

v3Z2

d3 + Y
].

and then apply the PECE (Predict, Evaluate, Correct, Evaluate)
method.

Several examples are presented to illustrate the analytical results
obtained in the previous section. Specially, our main objective is
to explore the possibility of dynamical behavior of the fractional
order system (9) by depending on the sensitive parameter and
as well as the fractional order by keeping others parameters
unchanged. To understand the e�ect of fractional order on the
system dynamics, I variedm in its range 0 < m < 1. I also plotted
the solutions for m = 1, whenever necessary, to compare the
solution of fractional order system with that of integer order. In
numerical simulations, Initial values are indicated with stars and
equilibrium points are denoted by red circles.

Example 1. In this example, here the parameter values are
chosen as b0 = 0.075, a1 = 0.105, d1 = d2 = 10.0, d3 =
20.0, v0 = 1.0, v1 = 2.0, v2 = 0.405, v3 = 1.0 and the initial
condition (1.2, 1.2, 1.2). All the parameters are taken from [34].
The bifurcation diagram with respect to sensitive parameters a0
and c3 is shown in Fig. 1 for di�erent fractional order m =
0.95, 0.75 and the standard orderm = 1. For the standard order
m = 1, it is observed that the system (9) approaches to chaos via
period doubling bifurcation for a0 ∈ (0.25, 0.5) and c3 = 0.047
(see Fig. 2(a)). It is interesting to note that the bifurcation
disappears slowly with the decreasing of fractional orderm (see
Figs. 2(b) and 2(c)). One can note that for lower memory (i.e.
for higher value of fractional order derivativem ), system shows
complex dynamics whereas for higher memory ( i.e. for lower
value of fractional order derivativem), system showsmore simpler
dynamics than the previous one.
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Figure 2. Bifurcation diagram of system (9) for the X population with
respect to a0 in (0.25, 0.5) with di�erent fractional ordersm = 0.95, 0.75
(Fig. 2(b) and 2(c)) and integer order m = 1 (Fig. 2(a)). Here b0 =
0.075, a1 = 0.105, d1 = d2 = 10.0, d3 = 20.0, v0 = 1.0, v1 = 2.0, v2 =
0.405, v3 = 1.0 with c3 = 0.047.

Example 2. Here I �xed a0 = 0.47 (say) and varying c3 ∈

(0.041, 0.049) and keeping remaining parameters unaltered as
in example 1. Both time series and phase portrait of our system (9)
have been presented for di�erent fractional orderm = 0.95, 0.75
and the standard orderm = 1. In this case, I observe that chaotic
behavior of our system changes to stability with decreasing of
fractional orderm (see Figs 3(a) - 3(f)).
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Figure 3. The trajectory and phase portrait of system (9) with di�erent
fractional ordersm = 0.95, 0.75 (Fig. 3(c) - 3(f)) and integer orderm = 1
(Fig. 3(a) - 3(b)). I observe that unstable behavior of our system changes
to stability with decreasing of fractional orderm. All the parameters are
same as in example 1 with a0 = 0.47 and c3 = 0.047.
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Figure 4. The trajectory and phase portrait of system (9) with di�erent
fractional ordersm = 0.65, 0.60 < 2

3
(Fig. 4(a) - 4(d)). I observe that the

solution converges to interior equilibrium point for any values ofm < 2
3
.

It reaches to equilibrium value more slowly as the value of m becomes
smaller. All the parameters are same as in example 1 with a0 = 0.27 and
c3 = 0.047.

Example 3. Keeping c3 unaltered, here I choose a smaller value
of a0 = 0.27 (say) and remaining all parameters are taken from
example 1. Initial values are indicated with stars and equilibrium
values are denoted by red circles in the �gure. Step size for all
simulations is considered as 0.05. Using the above parameter
set, I �rst verify the existence criteria of E∗. Here I observe
y∗ − a

s
= −1.4644 < 0, b − cx∗

a+x∗2
= −0.7582 < 0 and

v3 − c3d3 = 0.06 > 0. Hence E∗ = (2.5772, 1.2766, 5.7002) exists
in ℝ3

+ . Then compute D(F) = −0.0084 < 0, A1 = 0.4033 > 0,
A2 = 0.0689 > 0, A3 = 0.0221 > 0. Thus, following Theorem (4)
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Figure 5. The trajectory and phase portrait of system (9) with di�erent
fractional orders m = 0.85, 0.75 (Figs. 5(c) - 5(f)) and for integer order
m = 1 (Figs. 5(a) - 5(b)). I observe that the solution converges to interior
equilibrium point for any values ofm < 2

3
. It reaches to equilibrium value

more slowly as the value of m becomes smaller. All the parameters are
same as in example 1 with a0 = 0.35 and c3 = 0.047.

(ii), the interior equilibrium E∗ should stable for 0 < m < 2

3
. In

Fig. 3, I plot the time series solutions and phase portrait of FDE
system (9) with di�erent values ofm = 0.65, 0.60 < 2

3
. It shows

that all populations remain stable for all values ofm < 2

3
, though

solutions reach to equilibrium value more slowly as the value of
m becomes smaller (see Figs. 3(a) - 3(d) ).
Again if I increase the value of a0 = 0.35 and keeping all

parameters unaltered as in example 1, I see that our system
(9) exhibits 2-periodic limit cycle, 1-periodic limit cycle for
higher values of fractional orderm = 0.85 as well as for integer
order m = 1 (see Figs. 5(a) - 5(d)). If I decrease the value of m,
then limit cycle disappears and system becomes stable. Here I
choosem = 0.75 and observe that solution converges to interior
equilibrium point E∗ = (4.0150, 1.2766, 0.7816, 5.6362) (see Figs.
5(e) - 5(f)).

Example 4: To demonstrate the global stability of the interior
equilibrium point E∗, I consider the parameter values a0 = 0.47,
b0 = 0.25, v0 = 1.0, d0 = d1 = d2 = 10.0, a1 = 0.105, v1 =
2.0, v2 = 0.405, v3 = 1.0, c3 = 0.047, d3 = 20.0 and di�erent
initial points (1.2, 1.2, 1.2), (5.1, 2.1, 3), (3, 1, 5), (2, 5, 3.5), (3, 1, 2),
(2.5, 5, 4), (1.5, 5.5, 2), (4.5, 5.5, 5). Initial values are indicatedwith
stars and equilibrium values are denoted by red circles in the
�gure. Step size for all simulations is considered as 0.05. Using the
above parameter set, I �rst verify the existence criteria of E∗. Here
I observe y∗ − a

s
= −3.8744 < 0, b − cx∗

a+x∗2
= −0.2884 < 0 and

v3 − c3d3 = 0.06 > 0. Hence E∗ = (1.4589, 1.2766, 3.7751) exists
in ℝ3

+ . With these parameter values, I verify that all conditions
of Theorem (5) are satis�ed as

(i)
2sy∗

a(x∗2 + a)
+ s
2a2

− 1 = −0.8084 < 0,

(ii)
cx∗ − b(x∗2 + a)

a�d
+ s
2a2

+ 1
2(

q

4br�(q − p(� + �
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+ r))
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6

4

X

2

(c) m = 0.75

00

2

Y

4

6

8

2

1

3

7

6

5

4

8

Z

6

4

X

2

(d) m = 0.65

00

2

Y

4

6

8

2

1

3

7

6

5

4

8

Z

E
*E

*

Figure 6. Trajectories with di�erent initial values converge to the interior
equilibrium point E∗ for di�erent values ofm, indicating global stability
of the equilibrium E∗ when conditions of Theorem (5) are satis�ed. All
parameters are as in Fig. 1 except b0 = 0.25.

(iii)
q

4br�(q − p(� + �

4b
+ r))

− x∗2 + a

a�(� + �

4b
+ d)

= −0.2623 < 0.

where � = 1

b2(c+ c
4b
+r)

= 0.6330 > 0. Fig. 5 demonstrates

that solutions starting from di�erent initial values converge to
the equilibrium point E∗ = (1.4589, 1.2766, 3.7751) for di�erent
fractional orders, m = 0.65, 0.75, 0.85, and also for the integer
order, m = 1, depicting the global stability of the interior
equilibrium point for fractional order as well as integer order
(see Figs. 6(a) - 6(d)).

6. Conclusions

In this paper, I generalize the study of integer order three species
food chain model [34] with simpli�ed Holling type IV functional
response by using the memory e�ect related to fractional
order derivative. Following fractional order Caputo derivative
approach, here I �rst convert the integer order di�erential
equations of the three species predator-prey model (4) to the
fractional order di�erential equations and modeled the system
(9), which allow us to consider memory e�ects. I investigated
some qualitative behaviours of the system (9) like existence
and uniqueness, non-negativity and boundedness which are
systematically discussed in ℝ3

+. Local stability criteria of the
di�erent equilibrium points have been discussed for fractional
order system. Global stability of the interior equilibrium point
have been only discussed. I de�ned suitable Lyapunov function
to prove that the interior equilibrium is globally asymptotically
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stable if the system parameters satisfy some conditions. In such
a case, the system does not show any complicated dynamics
like chaos, indicating its global stability for any fractional
order 0 < m < 1. This is more reinforced by the fact that
solutions initiating from biologically feasible arbitrary initial
points converge to the interior equilibrium point. To con�rm
the analytical results of our system, numerical simulation is
performed for di�erent sets of biologically feasible parameter
values. Simulation results also agree perfectly with the analytical
results. Numerically it has been observed that the fractional order
system (9) shows more complex dynamics, like chaos, bifurcation
for higher memory as the fractional order becomes larger and
shows more simpler dynamics for lower memory as the order
m decreases. Specially, due to memory e�ect, it becomes stable
for lower value ofm. Moreover, dynamics of the fractional-order
system not only depends on system parameters but also depends
on fractional order m. Reader can note that for lower memory
or for memory less system (i.e. for higher value of fractional
order derivativem ), system shows complex dynamics like chaos,
bifurcation etc. whereas for higher memory or for memory
system ( i.e. for lower value of fractional order derivative m),
system shows more simpler dynamics which actually shows the
e�ect of memory for fractional order dynamical systems.
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