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Abstract

The use of fractional derivatives in predator—prey models naturally accounts for memory effects, reflecting the fact that population
interactions are influenced not only by present conditions but also by their historical states. By incorporating memory through fractional-
order operators, these models provide a more realistic description of ecological dynamics and reveal how past population levels can
significantly affect stability, persistence, and complex behaviors of predator—prey systems over time. In this paper, following fractional
order Caputo derivative approach, here | first convert the integer order three species food chain model to the fractional order model. Some
qualitative behaviors of the system like existence and uniqueness, non-negativity and boundedness which are systematically discussed in
a feasible region. Local stability criteria of the different equilibrium points have been discussed for fractional order system. Global stability
of the interior equilibrium point have been only discussed by defining suitable Lyapunov function. Numerical simulation is performed for
different sets of biologically feasible parameter values by using adams-type predictor corrector method (PECE). Numerically it has been
observed that the fractional order system shows more complex dynamics, like chaos, bifurcation for lower memory as the fractional order
becomes larger and shows more simpler dynamics for higher memory as the order m decreases. Specially, due to memory effect, it
becomes stable for lower value of m and the dynamics of the fractional-order system not only depends on system parameters but also
depends on fractional order m.
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1. INTRODUCTION

Fractional-order integrals and derivatives have wide applications
in various fields of science and engineering like physics, chemistry,
biology, mathematical sciences and engineering [1-5]. The major
reason behind using fractional derivatives is that it has the unique
property of capturing the history of the variable, that is, it has
memory [6, 7]. Generally, when the output of a system at each
time t depends only on the input at time ¢, such systems are
usually known as memory-less system. On the other side, when
the system has to remember previous values of the input in
order to determine the current value of the output, such systems
are known as non-memory less systems, or memory systems
[7, 8]. Researchers consider the effect of recent memory as
more important than the effect of older memory [9] and such
memory effect can not be obtained by the help of integer order
derivatives [10, 11]. Therefore, it has been successfully observed
the influence of memory concepts on several dynamical systems
[8, 12]. It has been recently used in ecological models [13-20]
and also in epidemiological models [21, 22]. Generally in past,

the study of dynamical systems is described with differential
equations where the derivatives were being of integer order. Now
by replacing the ordinary time derivative by a fractional order time
derivative, a time correlation function or memory kernel appears
and therefore the state of the system becomes dependent on all
its past states. Therefore, it has been observed that the derivatives
with arbitrary order, as introduced by Caputo [23], is a popular
choice in modeling real-world systems. The main advantage of
using Caputo fractional derivative [23] is that Caputo derivative
allows for the use of traditional , making it more intuitive to use
in dynamical systems [15, 23]. Any one can observe that in the
definition of Caputo fractional derivative, the time correlation
function is a power-law function, which has more impact to
show the memory effect on dynamical system. To understand
the physical interpretation of Caputo fractional derivative deeply,
let us recall the definition of Caputo fractional derivative ;D;" of
order m defined for an arbitrary function f(t) as follows [23]

t ()
oD f() = o 1_ o~ f @ fﬂfﬁm dr, n—-1<m<n, (1)
0
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where n is an integer, m is a real number. In (1), if0 < m < 1
then we can rewrite the equation as follows

N VA N
ODt f(t) = 1_,(1 _ m) (t _ T)m dr = /0 LU(t - T)f(l)(f)df’
(2)
where m
w(t): m,0<m<1, (3)

is the weight function or memory kernel whose task is the storage
of system memory over time ¢t [23]. Following (3), I note that
the strength of memory is controlled by the order of fractional
derivative m. When m — 1, memory of the system decreases and
the system tends toward a memory-less system and memory of the
system increases with smaller m. Next, I plot the memory kernel
function w(t) (Power-law function) with respect to t in w — ¢t plane
for different fractional order m (0 < m < 1).

Nature of Memory Kernel of Caputo
Fractional Derivative

=
o

ernel W(t)

J
i

Memory K

Figure 1. Visualizations of the behavior of the memory kernel function
w(t) (Power function) with respect to ¢ in w — ¢ plane has been presented
for different fractional order m (0 < m < 1) and also for integer order
m=1.

Since the decaying rate of this type of memory kernel occurring
in Caputo fractional derivative depends on fractional order m

and it is increasing with the decreasing of fractional order m,

thus Caputo fractional derivative is widely used to study the
memory effect of fractional order model. Therefore the Caputo
fractional derivative, involving a convolution integral with a
power-law memory kernel, are useful to describe memory effects
in dynamical systems.

In population models, chaos is especially intriguing for
researchers as it explains how simple biological interactions
can lead to complex, irregular, and unpredictable fluctuations
in species densities over time. After a fascinating research by
May [24], exploring the chaotic behaviors in population models
became a fascination for many researchers in recent times. Lots

of mathematical models have been proposed on the basis of food-

chain and analyzed to show complicated dynamics like chaos,
bifurcation etc. [25-31]. Aziz-Alaoui [32] discussed the complex
dynamics in a modified Leslie-Gower three species food chain
model with Holling type II response function. Again, Alidousti
and Ghahfarokhi [6] extended the work of Aziz-Alaoui [32] and
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analyzed the following fractional order tri-trophic food chain
model with Holling type II functional response. Sambath in [33]
also studied the asymptotic behavior of a fractional order three
species predator-prey model with the same functional response.
In recent past, Saeedian et.al. [21] studied the evolution of the
fractional order SIR epidemic model by considering memory
effects. Using the fractional calculus technique, Saeedian et.al.
shown that the dynamics of such a system depends on the strength
of memory effects, controlled by the order of fractional derivatives.
Investigation about the influence of memory effect in a fractional
order Leslie-Gower type model with Holling type IV functional
response is relatively less studied in population ecology. Therefore,
in this paper, I consider a three species food chain model with
simplified Holling type IV functional response to understand
underlying dynamics of the model with memory effect respect to
fractional order.

Here, I consider an integer order three species food chain
model which was studied by Ali et. al. [34]. They actually
investigated the following three-dimension coupled nonlinear
autonomous system of integer order differential equations with
non-monotone functional response (also called simplified Holling
type IV functional response) to understand the underlying
dynamics of food chain model:

dx VXY
QX bt - 22 X(0)>0

T aoX = bX* = 575 X(© 20,

dy uXY  n,YZ

a@ - _ Y ~ 2% yy>o0, (4
dar W+ iy 'O @
dz VA

Y _ ez - , Z(0) >0,

dr (C3 d3+Y> ©

where X, Y, Z are, respectively, the densities of prey, intermediate
predator and top predator at any instant of at time T. This
model considers interactions between a generalist top predator,
specialist middle predator, and prey. Here, the specialist middle
predator is consumed by the top predator, at a Holling type II rate.
The interactions between the specialist middle predator and prey
are modeled via a modified Holling type IV functional response.
The interaction between the generalist top predator and specialist
middle predator follow a modified Leslie-Gower scheme. That
is the generalist top predator grows quadratically, because of
sexual reproduction as ¢;Z2, and loses because of intra-species

competltlon as —

signifies that Z is a generalist. The

biological 1nterpretat10n of all the parameters are described in the
following table.

Table 1. Parameter interpretation

Symbol Meaning

ag Growth rate of prey

by Intra specific competition coefficient

Vit Maximum values that per-capita rate can attain

d, Measure of protection level provided by the environment to the prey
a Death rate of intermediate predator

d, Half-Saturation constant

c3 Growth rate of top predator via sexual reproduction

d; Residual loss of top predator due to severe scarcity of it’s favorite prey, Y

All parameters are non-zero positive. For description of the
model and system parameters, readers are referred to [32, 34].
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The rest of this paper is organized as follows: in Section
2, following fractional order Caputo derivative approach, I
convert the integer order differential equations of the three
species predator-prey model (4) to the fractional order differential
equations, thereby allowing us to consider memory effects.
Mathematical results related to qualitative behaviors of the system
(10) like existence, uniqueness, non-negativity and boundedness
will be investigated systematically in Section 3. In section 4,
Local stability criteria of all feasible equilibrium points have
been discussed for fractional order system. Global stability of
the interior equilibrium point have been only discussed here.
Using parameter values, numerically it has been observed that
the fractional order system (10) shows more complex dynamics,
like chaos, bifurcation for lower memory as the fractional order
becomes larger and shows more simpler dynamics for higher
memory as the order m decreases. Specially, due to memory effect,
it becomes stable for lower value of m. Simulation results are also
given to validate the analytical results in Section 5 .

2. Memorial Process from Integer order system to
Fractional order system

To observe the influence of memory effect, first I rewrite the
equation (4) in terms of time-dependent integral as [34]:

T

dx B B 20y VX (T)Y (1)

= - f w0 <a0X(1') bo(r) - ST ) dr,
vy ' 0, X(D)Y(7) 0,Y(1)Z(1)
ar - / . w =7 ( xo+d YO Yo T4
dz ! 20N v Z°(7)

T /0 w(T — 1) (cSZ (1) —Y(r) " ds) dr,

in which w(T — 7) plays the role of time-dependent kernel. A
power-law function is a suitable choice to explain the long-term
memory effects which exhibits a slow decay such that the state of
the system at quite early times also contributes to the evolution
of the system. This type of kernel ensures the existence of
memory effect whenever a system contains the fractional order
derivative. Thus, to generate the fractional order model I consider
the following power-law correlation function for w(T — 7):
(T-1)m2 0<m<1,

w(T —1) = (6)

1
I'(m-—1)
in which I'(x) is the well known gamma function. Note that I'(x)
is well defined for negative non-integer values [23]. The choice
of such kernel allow us to rewrite the equation (5) to the form
of fractional differential equations with Caputo-type derivative.
Now this kernel is substituted into the first equation of (5) and I

get
) dr,

|

where D = % is the integer order differential operator and

OI(T'"_D is the fractional integral of order (m — 1) on the interval
[0, T]. Next I apply a Caputo fractional derivative of order (m — 1)
on both sides of (7) which is denoted by SD(T"H) and I observe

dx

dar

T (T-7)m=2
Y0 pm-1)

veX (7)Y (1)
X2(1)+dg

(aOX(r) — boX(2) -

X ()Y (1)
X2(7)+dg

DX(T) =, 10" [aox<r> — boX2(x) — @
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D" VD X(T) =
VX (D)Y(7)

X21)+d, | ®

SD" oI 00X (7) = byXP(e) —
Now using the fact that the Caputo fractional derivative
and fractional integral are inverse operators [7], i.e., for some
differentiable function f(t), iD; oI}'f = f, for anyrealn > 0,1
obtain the following fractional differential equation from (8)

VX (T)Y(T)

SD;"X(T) aOX(T) - bOXZ(T) - m .
0

Similarly one can obtain from the last two equations of (5)

cpym v X(MY(T) LY (DZ(T)
cDRY(T) X +d a,Y(T) YO 1d
cnym _ 2 _ USZZ(T)

oDrz(T) = cZ%(T) —Y(T)+d3'

Therefore our integer order model (4) reduces to fractional order
model

VXY
SD?X = aOX—bOXZ—m,
u, XY v,YZ

DY = —a;Y + - , 9

T VT d+X2 dy+Y ©)

V32 )

cDNZ = ZlcsZ — .
0T (CS d,+Y

For simple mathematical calculation, I use the following
" transformations

2 3
a a t
X=2x,Y=—"LyZ=—272T=—,
by by, byvov, o
the system (9) takes the simplified form
sxy
oDrx = x(l-x)— 5 x(0) =% 20,
cxy vz
DY = g T T Y@=n20 (0
2
qz
f)Dth = pzz_y+r’ z(0) =z, 2 0,
where
= —bgdl b= ﬂ = —bov1 d= d2U0b0 = CBag
aé ’ ap’ é ' CIS ' byvev,”
L d30yby _ by
U, ’ (12 ’ a, ’

0

with the initial conditions x(0) > 0,y(0) > 0,z(0) > 0, where
oD/ is the Caputo fractional derivative of order m. The state space
of the system (10) is the positive cone R3 = {(x,y,z) € R® : x >
0,y >0,z >0}

3. Existence, non-negativity and boundedness

Here I study the existence and uniqueness of the solution of our
system (10) first in this section. In recent years, some researchers
proved the positivity of solutions before discussing the existence
and uniqueness of a dynamical system [35]. Ghani et. al. [36]



S. Mondal

also established boundedness of solutions even before proving
the existence and non-negativity of it. Roy et. al. [37] followed a
systematical apporach in their reaserch work and they proved the
existence and uniqueness of the solutions first while establishing
qualitative behaviour of solutions of a system. Later, they
discussed about non-negativity, boundedness and positivity of
the solutions which I find more interesting fact than the previous
studies. In a similar manner, I shall also follow a systematic order
to establish the existence and uniqueness of solutions of the model
(10), followed by non-negativity, boundedness which makes this
section more interesting compared to other existing literature.

3.1. Existence and uniqueness

To study the existence and uniqueness of the solution of our
system (10), I have the following Lemma due to Li et al [38].

Lemma 1 [38] Consider the system

 Drx(t) = ft,X),t > b,

to 7t

with initial condition x,, where 0 < m < 1, f : [ty,00) X A — R",
A € R If f(t,x) satisfies the locally Lipschitz condition with
respect to x then there exists a unique solution of the above system
on [t,, ) X A.

Using Lemma (1), here I study the existence and uniqueness
of the solution of system (10) in the region A X [0,T,], where
A ={(x,y,z) € R*| max{|x|, |y|, |z} £ M;}, T; < co and M, is
large. Denote X = (x,y,z), X = (X,7,Z). Consider a mapping

H : A — R3such that H(X) = (H,(X), H,(X), H;(X)), where
sxy
H(X) = x(1-x- 5=,
0 A NV L
HX) = o —by— T an
gz
Hy(x) = pz*- s

For any X, X € A, it follows from (11) that

I HX) - HX) |
=| Hy(X) — Hy(X) | + | Hy(X) = Hy(X) |
+ | Hy(X) — Hy(X) |

+|x§?a_by_y}fd_x§?a+by+}%|
qz’ |

y+r v+
=|(x_x)_(x2—5fz)_s(x?}a_)‘c)_f)a)|
+|c(%_x?a>_b(y_y) (m—y-yfd)l
+|p(Zz—22)—q(yz+r_}72_-:r)|
<x—x|+|x2—x*|
+(S+C)|<Fya_x+a>|+b|y 71
+|y}fd_m|+p|z —Z 1+l r—y_zjr”

13
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( )

<|x—Xx|+2M; | x—x | +—= | a(xy — XJ)

+x>'€(y—J7)|+b|y—)7|+—2Id(yZ—PZ)+W(Z—Z)I

+plz*-2° |+ | r(z> = 2) + (2’9 — 2°y) |
M
5<1+2M1+M)|x—x|
s+c ) (S+C) _
H(Mi(——+ )+b+M( +r2) ly=7I
1
(M1(2p+d+—)+M2(—+—))| -z
SL” (x,y,z)—(x,y,z) ”
SLIX-X1,
where L = max{1 + 2M, + 228+ Ml(SJr—C + - )+ b +M2((S+C) +

a
q 1.2 2 2
ShM@2p+ -+ =) +M1(d2 =

Thus H(X) satisfies Lipschitz condition with respect to X and
following Lemma (1), there exists a unique solution X(t) of the
system (10) with the initial condition X(0) = (x(0), y(0), z(0)).

3.2. Non-negativity

Considering the biological significance of the model, I am only
interested in solutions that are non-negative and bounded in the
region Ri ={(x,y,z) €R3: x >0,y >0,z > 0}. To prove the
non-negativity and uniform boundedness of our system, I shall
use the following lemmas.

Lemma 2 [39] Suppose thatf(t) € C[a,b] and D} f(t) € C(a, b]
with 0 < m < 1. The Generalized Mean Value Theorem states that

f@) = fla)+ ﬁ(D’”f)(i) (t—a)m,

wherea < € <t, Vt € (a, b].

Lemma 3 [40] Let u(t) be a continuous function on [t,, o) and

satisfying
¢ DMu(t) < —Au(t) + p,

”(to) = uto’

where0 < m <1, (A, u) € R%, 1 # 0and t, > 0 is the initial time.
Then its solution has the form

u

u(t) < (uto — ’%)Em[—l(t —t)™] + T

We have the following existence results on initial value problem
(IVP) with caputo type fractional order differential equations.

Lemmad4 [41] Consider the initial value problem (IVP) with
caputo type FDE

o DI (t) = ft,x(0), x(0) = X, (12)

where f € C([0,T]XR,R), 0 < m < 1. Assumethat f € C(Ry,R),
whereR, = [(t,x) : 0<t <a,| x—x, |<blandlet| f(t,x) |<N
on R,. Then there exists at least one solution for the IVP (12) on

1
0<t<ywherey = min(a,[ %F(m+ 1)]E>, 0O<m<1
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Lemma 5 [41] Consider the initial value problem (IVP) given by
(12). Let

g0, x.() = f(t—(t" =0T (m + 1)), x(t— (" —T(m + 1))

and assume that the conditions of lemma (4) hold. Then, a solution
of (12), is given by

[Wl

x(t) = x*(l“(m—-l-l))

where x,(v) is the solution of the integer order differential equation

d(x,(v)) _
T - g(U, x*(U))

with the initial condition x,(0) = x,.

Theorem 1 All the solutions of system (10) which start in R3 are
non-negative.

Proof: First I show that the solutions x(t) € [R{fr are non negative
if it starts with positive initial values. If not, then there exists a
t; > 0 such that

x(t) >0, 0<t<ty,
x(t) =0, t=t, 13)
x(tf) <o.
Using (13) in the first equation of (10), we have
oD x(O)l i, = 0. (14)

According to Lemma (2), I have x(¢") = 0, which contradicts the
fact x(t7) < 0. Therefore,  have x(t) > 0, V ¢ > 0. Using similar

arguments, one can prove y(t) > 0,Vt > 0 and z(t) > 0,Vt > 0.

So, it is proven that all the solutions of system (10) which start in
R3 are non negative.

3.3. Boundedness

Next I will show that, under some assumptions, all solutions
x(t), y(t) and z(t) of our system (10) are uniformly bounded for
sufficiently large ¢.

Theorem 2 All the non negative solutions of system (10) which are
initiating in R3 are uniformly bounded, provided

B q
— < = 15
Brp+r<s (15)
and ultimately entering the region
Q:{(xyz)el]%{3 -0<x<10<x+z<1+i
Vs +:0=5x<10< 5= e
y 1 M}
0< Z <1+ —+—4
_x+ﬁ+0(Z_ +4b+b
where
b 1 1

M

W@+ Lan T ag-@+2+np)

Proof: (i) Let (x(0),y(0),z(0)) € Q and from the following

Theorem (1), (x(t), y(t), z(¢)) remain non negative in R3, then I
will show that (x(t), y(t), z(t)) € Q,Vt > 0 and Vm € (0,1]. Now
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to reach our main objective, I have to prove the following steps
forallt > 0 and Vm € (0,1],
Step (i-a): x(t) < 1;

) 0] 1
Step (i-b): x(t) + ; <1+ o

Step (i0): x(1) + 22 +az(t) S 1+ o+ 5.

Proof of Step (i-a): 1 first prove that x(t) < 1,V¢t > 0 and
vm € (0,1]. Since x > 0,y > 0,z > 0in Ri, then any solution
(1) = (x(1), y(t), z(1)) of (10), which starts in R3, must satisfy
the fractional order differential inequation

oD'x < x(1—x),x(0) = x, > 0,m € (0,1], (16)

which is clearly obtained from the first equation of (10). Moreover,
this equation (16) represents a fractional order logistic equation.
Now I can apply Lemma (5) to solve this fractional order
differential inequation (16). Here

8, x,()) = x, (V)1 = x,(v))
Then corresponding integer order differential in-equation of this

fractional IVP (16) is

) <%~ 2.0, 5.0 = x,

The solution of this integer order linear IVP is
1
x,() £ 7/,
V) 1+4+ce?

where ¢; = L1 Consequently, the solution of the given
X0
fractional order IVP (16) is
" 1

x(t) = x.( )< o
I'(m+1) 1 + ¢ e oD

<1,Vt>0,0<m<1.

Then any solution x(t) of (16) must be bounded by 1 with
respect to any fractional order m € (0,1]. Therefore, it
follows that any non negative solution ¢(¢t) of (10) satisfies
x(t) < 1,Vt > 0and Vm € (0,1].

Proof of Step (i-b): 1 now prove that x(t) + % <1+ i, Vi>0
and Vm € (0,1]. Let us define a function

t
Vi =x0+ 22, a7)
Taking fractional time derivative, I have
. (@) b 1 yz

Since all parameters are positive and solutions initiating in R?
then,

b
oDIV() <x(1 —x) — Ey,

DMV () <x(1 — x) + bx — b(x + 2),

B
1
SDIVA (DY, () < b+ 7,

sincein Q,0 < x < 1and maxpy;;x(1—x) = i Applying Lemma
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(3), I have

V(1) < (V1(0) — (1 + ﬁ»Em[_th] e ﬁ)’

1 (18)
=V1(0)E,[-bt"] + (1 + E)(l — E,[-bt™]).

For t — oo, we thus have V,(t) - (1 + 4ib). Therefore, V,(t) <

a+ 4ib), Vt > 0 and Vm € (0, 1]. Hence it follows that any non

negative solution of (10) satisfies x(t) + % <1+ i,Vt > 0and

vm € (0,1].

Proof of Step (i-c): 1 finally prove that x(t) + % +az(t) <

1+ i + %,Vt > 0and Vm € (0, 1] holds, with

1 1
vM_

o= = 3 s
Hg=@+ - +1p)

R

provided 3 + 4% +r < 2. Again I define a function
p

V,(t) = x(t) + )% + az(t), 19)
Taking fractional order time derivative, I have
oDV (8) =;D"x(t) +; D" % +5 D"az(t),
=x(1-x)— %y - %}% a(p— 5 fll_ L

Similarly to the previous step (i-b), since all parameters are
positive, all solutions initiating in Int(R3) remain non negative

andin Q,0 < x <1, maxp;x(1 —x) = i,y <B+ %,Iget

DMV, (1) < i +b—bV,(t) + abz + a(p — ﬁ)z{

DIV, (1) < 1 +b—bV,(t) + abz + a(p — —+—)2?,

Bt
DMV, (6)+ bV,(t) <b + i +M, (20)
where,
M= 1z
= max,eg, | abz + a(p — T)Z .
B+ w +r

Now I intend to find M, the maxima for the function f(z) =
abz+a(p——+—)z%,z € R,. Here f'(z) = ab+2az(p——+)

£ £
B+ il B+ e

and f”(z) = 2a(p — ——). Since B + E 47 < 2 10observe
+E+r 4b p
f"(z) < 0 and hence max[ f(z)] exists at

b
z= W = z,(say).
B - D
ﬁ+E+r
Therefore using o« = ;ﬂ, I have

BB+ L 4r)

ab*(B+ L +7)

4b 1
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Then applying Lemma (3) on (20), I have

Va0) S (V2(0) = (L 5 + ZODB, (bt + (14 o + 30,
= V,(0)E, [=bi™] + (1 + 4ib + %4)(1 — B, [-bt™]).
@2

For t — oo, we thus have V,(t) - (1 + 4ib + %W). Therefore,

V) <1+ ﬁ + %),Vt > 0 and Vm € (0, 1]. Hence it follows
that any non negative solution of (10) satisfies for all m € (0, 1],

x(t) + 0] + S S z(t)
B+ L+r
4b
1

g . VE>0.
4q—B++1p)

1
< 1+—+
- 4b

S =

Therefore, all the non negative solutions x(¢), y(t), z(t) of
system (10) initiating in R? are uniformly bounded and entering
the set Q, Vt > 0 and Vm € (0,1].

4. Existence and stability of equilibria

I have the following stability result on fractional order dynamical
systems.

Theorem 3 [20, 42, 43] Consider the following fractional order
system
oD x(8) = f(x),x(0) = x,

with0 < m < 1,x € R"and f : R" — R". The equilibrium
points of the above system are calculated by solving the equation:
f(x) = 0. These equilibrium points are locally asymptotically stable

if all eigenvalues A; of the Jacobin matrixJ = Z—f evaluated at the
X

An equilibrium point of system (10) is found by solving the three
equations D/"x(t) = D["y(t) = D/"z(t) = 0 in (10). There
are four biologically feasible non-negative equilibrium points
of system (10). The trivial equilibrium E, = (0,0,0) and the
axial equilibrium E; = (1,0,0) are always exist. The planner
equilibrium point E, = (X, 7, 0) exists uniquely in the positive
quadrant of xy— plane, where x and y are given by
c

¢ 1. N
x—zb,y—s(l X)(a + x?),

provided that the following conditions are hold:

c
— <1, > —4ab?>=0.

2b (23)

I observe that in the absence of prey x, both predators y and z can
not survive. So there is no equilibrium point in the yz— plane.
Similarly I can also conclude that there is no equilibrium point
in xz— plane. Now there exists a unique interior equilibrium
point E* = (x*, y*, z*) of the system (3), where the equilibrium
population densities are given by

q

M = max[f(2)] |,,,=

(21)

Mg-@+L4np) ag-@+Lnp)

yi==-r, (29)
p
while x* is the positive root of the cubic equation
x}—x2+ax+(sy* —a)=0, (25)
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this equation can be written as

f(x) = Ax*+Bx>+Cx+D =0, (26)

where A = 1,B = —1,C = aand D = (sy* — a). Now since
0 < x* <1, then f(0) =D < 0,if y* < 2 and f(1) = sy* > 0.
Thus, f(0)f(1) = sy*(sy* —a) < 0, and t}slen there is a positive
root of equation (26) lies in (0, 1) when y* < 2 is satisfied. Now
from the second equation of system (10), I obtain

cx*
a + x*?

z¢=(-b+ y* +d), 27

= . Therefore the positivity condition of E*

a+x

and it exists if b <

: 3
in R are .

cX

. a
V<=, b<——,
a—+ x*

s
where v; > c;d;. Different stability results for the equilibrium
points E,, E;, E, and E* are given in the following.

Now to investigate the dynamical behavior of the equilibrium
points E;, (i = 0,1,2) and E*, I first construct the Jacobian matrix
J evaluated at an equilibrium point (x, y, z) of the system (10) is

a;; A 43
Jx,y,2) =a, ayp axyl, (28)
a3 Q43 Az
sy(a—x2) sx
wherea;; =1 —-2x— ——, a, = —, a;3 =0, a,, =
1 e G2 2’ 13 » Qa1
cy(a—x?)
(a+x2)2”’
cx dz ¥y qz?
a,, =—-b+ — ——,0p=——, 433 =0, a3 =
2 a+x2 (d+y)2’ 23 d+y’ 31 > T (r+y)2’

as; =2z(p - )%)

Then the Jacobian matrices evaluated at E,, E; and E, are given
by

1 0o 0
JE)=|o -b of,
0O 0 O
-1 -5
a+1c
JEND=[0 -b+-= of,
a+1
0 0 0
1—2%— (1-x)(a—x2) o sx 0
(1-%)(a ;;322 o y
J(E,)) = clmxtazxt) —
( 2) s(a+x2) 0 (d+y)
0 0 0

Clearly, the eigenvalues of J(E,) are £&; = 1, §, = —b and
&, = 0. Note that Arg(&;) is undefined. Since one them is a
positive real and anothe one is a negative real, then E, is always
unstable. Therefore E, is non-hyperbolic.

c—b—ab

Next, the eigenvalues of J(E;) are §; = —1(<0), &, = -
and £&; = 0. Hence E, is also non-hyperbolic. Note that If
¢ —b > abthen &, > 0. In this case, E, is always unstable saddle
along x— direction. If c — b < ab then £, < 0. Consequently, two
of the eigenvalues are negative real, so in this case E, is stable
manifold along x and y— direction.
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Again from the variational matrix of E,, the eigenvalues of J(E,)
—_Wa—72
are £, = i[P +1/P2—4Q], where P = 1 — 2% — L2200 5 =

a+x2
21— ) (g 72
% and &; = 0. Since one of the eigenvalue £; becomes
a+x
zero, so E, is non-hyperbolic equilibrium point.

For local stability of the interior equilibrium E*, I compute the
Jacobian matrix of system (10) at E* = (x*, y*,z*) as

*

_ (1—x*)(a—x*z) SX

1-—2x* —~ R 0
gy oy .
JEY) = xYa—x") vz 29)
s(a+x*) (y*+t§)2 d+y*
0 i 0
yE+r
The eigenvalues are the roots of the cubic equation
F&)=8+A8+A5+A,=0, (30)
gt -
whereA1=—1+2x*+(1x)(a2x ) YE R
a+x* (y*+d)?
A, = yrz* 1—2x*— (l—x*)(a—x*z) + cx*(l—x*)(a—x*z) py*z’*2
27 rrdp a+x+? (a+x*2)2 Gr+d)y*+r)
. %2 o g*?
A= V2 (1 D s )>.
T o atx?

The equilibrium E* is said to be locally asymptotically stable if all
eigenvalues of (30) satisfy | Arg(&;) |[> g,Vm €(0,1],i =1,2,3.
One can then determine the stability of E* by noting the signs of
the coefficients A; and discriminant D(F) of the cubic polynomial
F(&) [13, 44]. The discriminant D(F) of the cubic polynomial
F(&)is

1 A A4 A, 0
0 1 A A, A,
DF)=—-|3 24, A, 0 0
0 3 24, A, 0
0 0 3 24, A,

=184, 4,A; + (A1 A,)? — 4A, A7 — 4A3 — 27A2

. Then the following theorem regarding local asymptotic stability
of E* of the system (10) is true [13, 20, 44].

Theorem 4 (i) IfD(F)>0,A; >0,A; >0and A;A,—A; >0
then the interior equilibrium E* is locally asymptotically stable
forallm € (0,1].

(i) IfD(F) <0, A, > 0,4, >0,A;>0and0 < m < z then the
interior equilibrium E* is locally asymptotically stable.

(iii) If D(F) < 0, A; < 0, A, < Oand m > g then the interior
equilibrium E* is unstable.

(v) IfD(F)<0,A; >0,A,>0,A1A, = A;and 0 < m < 1 then
the interior equilibrium E* is locally asymptotically stable.

Then, I proceed to prove the global stability results of the interior
equilibrium point E* = (x*, y*, z*). The following lemma will be
used in proving it.

Lemma 6 [18] Let x(t) € R, be a continuous and derivable
function. Then for any time instant t > t,
x(t)

x(t)—x*—x*ln?] < (1—

x*

x(1)

c m
tODt

) oD x(0), x" € Ry, Vm € (0, 1].
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Theorem 5 The interior equilibrium E* = (x*,y*, z*) of system
(10) is globally asymptotically stable for any m € (0, 1] if

. 2sy* s
l ——+ —=-1<0,
() a(x*2+a) 2a2
.. *_b(x*? =
O PUAY (R SR DY
agd 20 2\dbra(q—p(B+,;+)  aB(B+ i +d)
+2
(iii) i - — <o,
4bror(q—p([j’+7b+r)) aﬁ(ﬁ+E+d)
where a = ;ﬁ
b2(B+ L +7)
Proof: Let us consider the Lyapunov function
x*+a) y
Vi(x, ,z-(x x* —x*Iln— )+— —y* —y*ln—
(x,y,2) o g VY Ty

+O*+ r)(z —zF = z*ln%).
It is easy to see that V = 0 only at (x,y,z) = (x*,y* z*) and
V > 0 whenever (x,y, z) # (x*,y*,z*). Considering the m — th

order fractional derivative of V(x, y, z) along the solutions of (10),
I have

oDV (x,y,2) = gD{"(x —x* - x*ln%)
(x + a)

aB @ v )

+ " +r);D; <z—z -z ln;).

+ —y*ln—

y*

Using Lemma (6) and making some algebraic manipulations, I
have

oDIV(x,y,2)

< - Dipmag ¢ EEDO= Dy
+or+n & = R0
2
N PR Zs-):-a] L& a+ a)(y — %)
sx b * *
[;+a_ﬁ_ﬁw+ )+O’+”“_Zﬂ”_y+J
=(x — x*)[(x —-Xx)+ *++a xzs_}:_ a]
(x** +a) oy X X7 z .
+—Tr—@‘)Luu‘ﬁuw+ﬁw+wf¢w+w

+ 20" +r)(z—z*)[ y?i-r]
y*(x*+a) —y(x"‘2 +a)
(x2 + a)(x*? + a)

ye+r

—(x=x") +s(x— x*)[

N (x* + a)s(y — x(x** +a) — x*(x* + a)
a (x2 + a)(x** 4+ a)
x*’+a) AdE@ —2) + i —2) + 2y -y}
R @"yﬂ G+d0" +d) ]
= yE=2)
sy"(x+x7) ey .
ooty oe-xr - - +)u ) =)
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" +a) z(y -y
a  (y+d)(y*+4d)
qz x** +a RO
[m—m G-y Nz—-2z")
2sy e 2O+ Oy — Y
<[a(x*2 + a) ](x ¥y apd(y* +d)
(x—x*P+@y-y )2]
a(x*2 +a) 2
+ [ q _ x*+a ]

4bra(g - p(B+ £ +1)

[y —y*) +(z —Z*)z]
2

apB+ L +d)

sy ooy (X =D @)
a2 1) 1](x x*)* + apd »-y9)
(x=x*) + -y
* E[ 2 ]
+[ q __x’+a ]@—yﬂ2+@—zﬂ2
B B 2
4bra(q — p(B + " +r) afB+ " +d)
_ 2sy* S . cx* — b(x*2 +a) S
'4;&3:;3*55‘1kx‘xY+ T apd T2t
2
1( q b +a )](y—y*)2
4bra(q — p(B + + r)) aB(B + + d)
+1[ q X +a ]z—z*)z.
2 4bra(q — p(B + % + r)) aB(B + + d)

One can note that {D/"V(x,y,z) < 0,V(x,y,z) € R} if each
coefficient of (x — x*)?, (y — y*)* and (z — z*)? are negative, giving
the conditions

2sy* N
() —— + = —1<0,
a(x**+a) 2a?
(i) cx* — b(x"‘2 +a) s
apd 2a?
1 *?
N 5( q X +a ) <o,

abralq—pB+ L +1)  afB+L +d)

2
X" +a

BB+ L +d)

q

) 7 - <0.
4bra(q — p(B + 2t r))

Here ;D;"V(x,y,z) = 0 implies that (x,y,z) = (x*,y*z*).
Therefore, the only invariant set on which ;D/"V(x,y,z) = 0is
the singleton set {E£*}. Then, using Lemma (4.6) in [19], it follows
that the interior equilibrium E* is global asymptotically stable for
any m € (0, 1]. Hence the theorem is proven.

This global stability result is independent of fractional order m
and it is also true for integer order (m = 1).

5. Numerical Simulations

In this section, I perform extensive numerical computations of
the fractional order system (9) for different fractional values of
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m (0 < m < 1) and also for m = 1. I use Adams-type predictor
corrector method (PECE) for the numerical solution of system
(9). It is an effective method to give numerical solutions of both
linear and nonlinear FODE [45, 46]. I first replace our system (9)
by the following equivalent fractional integral equations:

“m VXY
X(T) = X(0)+DT [aoX—b0X2 - m],
_ u, XY v,YZ
YT) =Y D"-a\Y + —— — 1
(1) )+ D" -y tLrxe d2+Y]’ (3D
— -m 2 _ U3ZZ
2T) = 204D - gl

and then apply the PECE (Predict, Evaluate, Correct, Evaluate)
method.

Several examples are presented to illustrate the analytical results
obtained in the previous section. Specially, our main objective is
to explore the possibility of dynamical behavior of the fractional
order system (9) by depending on the sensitive parameter and
as well as the fractional order by keeping others parameters
unchanged. To understand the effect of fractional order on the
system dynamics, I varied m in its range 0 < m < 1. I also plotted
the solutions for m = 1, whenever necessary, to compare the
solution of fractional order system with that of integer order. In
numerical simulations, Initial values are indicated with stars and
equilibrium points are denoted by red circles.

Example 1. In this example, here the parameter values are
chosen as b, 0.075, a; = 0.105, d; = d, = 10.0, d,
20.0, vy = 1.0, v; = 2.0, v, = 0.405, v; = 1.0 and the initial

condition (1.2,1.2,1.2). All the parameters are taken from [34].

The bifurcation diagram with respect to sensitive parameters a,
and c; is shown in Fig. 1 for different fractional order m =
0.95,0.75 and the standard order m = 1. For the standard order
m = 1, it is observed that the system (9) approaches to chaos via
period doubling bifurcation for a, € (0.25,0.5) and c; = 0.047
(see Fig. 2(a)). It is interesting to note that the bifurcation
disappears slowly with the decreasing of fractional order m (see

Figs. 2(b) and 2(c)). One can note that for lower memory (i.e.

for higher value of fractional order derivative m ), system shows
complex dynamics whereas for higher memory ( i.e. for lower
value of fractional order derivative m), system shows more simpler
dvnamics than the nrevious one.

. (@) m = 1.0 S (b) m = 0.95 (© m=0.75

0.85

0.84 F

0.83

St 082 F

081 F

08 b

079 b

078 F

077k

076 |

o

o 75
0.25 025 03 035 04 045 05

a a a,

Figure 2. Bifurcation diagram of system (9) for the X population with
respect to a, in (0.25,0.5) with different fractional orders m = 0.95, 0.75
(Fig. 2(b) and 2(c)) and integer order m = 1 (Fig. 2(a)). Here b,
0.075, a; = 0.105, d; = d, = 10.0, d3 = 20.0, vy = 1.0, v; = 2.0, v,
0.405, vy = 1.0 with ¢; = 0.047.

Example 2. Here I fixed a, 0.47 (say) and varying c;
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(b) m = 1.0

(a) m=1.0
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Figure 3. The trajectory and phase portrait of system (9) with different
fractional orders m = 0.95, 0.75 (Fig. 3(c) - 3(f)) and integer order m = 1
(Fig. 3(a) - 3(b)). I observe that unstable behavior of our system changes
to stability with decreasing of fractional order m. All the parameters are
same as in example 1 with a; = 0.47 and c3 = 0.047.

) (a) m = 0.65 (b) m = 0.65

> 1.5

1

\

0.5
5000 6000 7000 8000 9000 10000

T
6 (¢)m=0.6
1.4 6
> 12 N 4 E*
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~

2
Y

0.8
5000 6000 7000 8000 9000 10000
T

Figure 4. The trajectory and phase portrait of system (9) with different
fractional orders m = 0.65, 0.60 < § (Fig. 4(a) - 4(d)). I observe that the

solution converges to interior equilibrium point for any values of m < >

It reaches to equilibrium value more slowly as the value of m becomes
smaller. All the parameters are same as in example 1 with a;, = 0.27 and
c3 = 0.047.

Example 3. Keeping c; unaltered, here I choose a smaller value
of a, = 0.27 (say) and remaining all parameters are taken from
example 1. Initial values are indicated with stars and equilibrium
values are denoted by red circles in the figure. Step size for all
simulations is considered as 0.05. Using the above parameter
set, I first verify the existence criteria of E*. Here I observe

y - % = -ld644 < 0, b— 5 = —0.7582 < 0 and
s a+x*

U; — c;d; = 0.06 > 0. Hence E* = (2.5772,1.2766, 5.7002) exists

in Ri . Then compute D(F) = —0.0084 < 0, A; = 0.4033 > 0,

A, = 0.0689 > 0, A; = 0.0221 > 0. Thus, following Theorem (4)




S. Mondal
(aA)m=10 s (¢) m=0.85 (€ m=0.75
4 4 4
3 3 3
* * x
2 2 )
1 1 1
0 0 0
5000 6000 7000 8000 900010000 5000 6000 7000 8000 9000 10000 5000 6000 7000 8000 9000 10000
T T T
(b)m=1.0 (d) m=0.85 ) m=10.75

10 E

NS

0

10 ]
6 S 5
y 00

Figure 5. The trajectory and phase portrait of system (9) with different
fractional orders m = 0.85, 0.75 (Figs. 5(c) - 5(f)) and for integer order
m = 1 (Figs. 5(a) - 5(b)). I observe that the solution converges to interior

equilibrium point for any values of m < 3 It reaches to equilibrium value

more slowly as the value of m becomes smaller. All the parameters are
same as in example 1 with a; = 0.35 and c3 = 0.047.

(i), the interior equilibrium E* should stable for 0 < m < g In
Fig. 3, I plot the time series solutions and phase portrait of FDE
system (9) with different values of m = 0.65, 0.60 < 2 It shows

that all populations remain stable for all values of m < E, though

solutions reach to equilibrium value more slowly as the value of
m becomes smaller (see Figs. 3(a) - 3(d) ).

Again if T increase the value of a, 0.35 and keeping all
parameters unaltered as in example 1, I see that our system
(9) exhibits 2-periodic limit cycle, 1-periodic limit cycle for
higher values of fractional order m = 0.85 as well as for integer
order m = 1 (see Figs. 5(a) - 5(d)). If I decrease the value of m,
then limit cycle disappears and system becomes stable. Here I
choose m = 0.75 and observe that solution converges to interior
equilibrium point E* = (4.0150, 1.2766,0.7816, 5.6362) (see Figs.
5(e) - 5(f)).

Example 4: To demonstrate the global stability of the interior
equilibrium point E*, I consider the parameter values a, = 0.47,
b, = 0.25,v, = 1.0,dy = d;, = d, = 10.0, a, = 0.105, v, =
2.0, v, = 0405, v; = 1.0, c; = 0.047, d; = 20.0 and different
initial points (1.2,1.2,1.2), (5.1,2.1,3), (3,1, 5), (2,5,3.5), (3,1, 2),
(2.5,5,4),(1.5,5.5,2),(4.5,5.5, 5). Initial values are indicated with
stars and equilibrium values are denoted by red circles in the
figure. Step size for all simulations is considered as 0.05. Using the
above parameter set, I first verify the existence criteria of E*. Here

I observe y* — 2 = —3.8744 < 0, b — —— = —0.2884 < 0 and
s a+x*

v; — c3d; = 0.06 > 0. Hence E* = (1.4589,1.2766, 3.7751) exists

in R3 . With these parameter values, I verify that all conditions

of Theorem (5) are satisfied as

2sy* N
) ——+—-1=-0.8084 <0,
® a(x**+a) 20°
* — *2
Gy Kbt s
afd 2a?
1 q x** +a
t3 8 - g
4bra(q — p(B + 2t r) aBB+ ot d)
= —0.0906 < 0,
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(@) m=1.0

(b) m = 0.85

(© m =075 (d) m = 0.65

Figure 6. Trajectories with different initial values converge to the interior
equilibrium point E* for different values of m, indicating global stability
of the equilibrium E* when conditions of Theorem (5) are satisfied. All
parameters are as in Fig. 1 except by = 0.25.

q x*+a
(iii) 5 - 5
4bra(qg — p(B + a7t r) apB+ a7t d)
= —0.2623 < 0.
where o = = 0.6330 > 0. Fig. 5 demonstrates

b2(c+ = +r)
that solutions stalf‘éjing from different initial values converge to
the equilibrium point E* = (1.4589, 1.2766, 3.7751) for different
fractional orders, m = 0.65,0.75,0.85, and also for the integer
order, m = 1, depicting the global stability of the interior
equilibrium point for fractional order as well as integer order
(see Figs. 6(a) - 6(d)).

6. Conclusions

In this paper, I generalize the study of integer order three species
food chain model [34] with simplified Holling type IV functional
response by using the memory effect related to fractional
order derivative. Following fractional order Caputo derivative
approach, here I first convert the integer order differential
equations of the three species predator-prey model (4) to the
fractional order differential equations and modeled the system
(9), which allow us to consider memory effects. I investigated
some qualitative behaviours of the system (9) like existence
and uniqueness, non-negativity and boundedness which are
systematically discussed in R3. Local stability criteria of the
different equilibrium points have been discussed for fractional
order system. Global stability of the interior equilibrium point
have been only discussed. I defined suitable Lyapunov function
to prove that the interior equilibrium is globally asymptotically
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stable if the system parameters satisfy some conditions. In such
a case, the system does not show any complicated dynamics
like chaos, indicating its global stability for any fractional
order 0 < m < 1. This is more reinforced by the fact that
solutions initiating from biologically feasible arbitrary initial
points converge to the interior equilibrium point. To confirm
the analytical results of our system, numerical simulation is
performed for different sets of biologically feasible parameter
values. Simulation results also agree perfectly with the analytical
results. Numerically it has been observed that the fractional order
system (9) shows more complex dynamics, like chaos, bifurcation
for higher memory as the fractional order becomes larger and
shows more simpler dynamics for lower memory as the order
m decreases. Specially, due to memory effect, it becomes stable
for lower value of m. Moreover, dynamics of the fractional-order
system not only depends on system parameters but also depends
on fractional order m. Reader can note that for lower memory
or for memory less system (i.e. for higher value of fractional
order derivative m ), system shows complex dynamics like chaos,
bifurcation etc. whereas for higher memory or for memory
system ( i.e. for lower value of fractional order derivative m),
system shows more simpler dynamics which actually shows the
effect of memory for fractional order dynamical systems.
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