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Abstract

This paper presents an analytical investigation of shear-horizontal (SH) wave propagation in an inhomogeneous dual-porous layer
sandwiched between a viscous sandy medium and a cracked poroelastic half-space. The dual-porous layer is saturated with a
heterogeneous fluid and combines both matrix and fracture porosities, enabling a realistic simulation of complicated subsurface
formations. The proposed model accounts for material inhomogeneity, solid–fluid interaction, and porous dissipation mechanisms in
both the dual-porous layer and the cracked poroelastic medium. Imperfect mechanical interfaces are added at the boundary surfaces
to reflect partial bonding conditions, with their consequences defined by nondimensional interfacial stiffness parameters. The influences
of interfacial imperfection, fracture volume percentage, porosity, density contrast, and layer thickness ratio on SH-wave dispersion and
attenuation are explored in depth. The results demonstrate that both interfacial stiffness and geometrical configuration greatly affect the
wave propagation characteristics, revealing the strong sensitivity of SH waves to interfacial circumstances and microstructural features.
The established solid–fluid coupled framework gives better physical insight into wave–medium interaction processes and offers a rigorous
theoretical basis for nondestructive evaluation, seismic interpretation, and geophysical exploration in layered porous media. features. This
solid–fluid coupled theoretical framework provides deeper physical insight into the wave–medium interaction mechanisms and establishes
a foundation for nondestructive evaluation, seismic interpretation, and geophysical exploration in layered porous systems.
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1. Introduction

In numerous engineering and geophysical applications, such
as hydrocarbon extraction, geotechnical analysis, geothermal
energy harvesting, and subsurface monitoring, porous geological
formations are an essential feature of the Earth’s subsurface. In
his key articles, Biot [1, 2] laid the theoretical framework for
wave propagation in �uid-saturated porous media by carefully
analyzing the interaction between an elastic solid frame and a
viscous pore �uid. In order to account for the more intricate
pore structures and multiscale interactions seen in natural
geomaterials, Biot’s theory has undergonemajor extensions and is
still a fundamental component of contemporary poromechanics.
A single interconnected pore network is insu�cient to fully

describe the pore structure in many geological situations. Rather,
fractures, joints, vugs, or microcracks are typically overlaid
atop a low-permeability matrix that makes up the subsurface.
Barenblatt et al. [3] and Warren et al. [4] introduced the double-
porosity idea, which treats the matrix and fracture systems as
interacting continuum exchanging �uid mass, in order to address
the disadvantages of single-porosity models. Later, Berryman
and Wang [5, 6] expanded this framework within a rigorous

mechanical setting and produced dynamic equations for double-
porosity media, allowing for the investigation of transient and
wave-induced processes.

Physical properties, including variable fracture density,
multiscale permeability, nonlinear �uid–solid coupling, and
fracture-dependent anisotropy that are typically encountered
in naturally fractured reservoirs, have been integrated in later
advances [7–10]. The importance of precisely simulating
the interplay between matrix porosity, fracture porosity, and
�uid exchange mechanisms under drained and undrained
circumstances is also underscored by recent studies [11–16].
These advancements have widened the applicability of porous
media theory to modern �elds including environmental
geophysics, induced seismicity, CO2 sequestration, and
unconventional reservoirs.

In strati�ed sedimentary basins, where geological compaction
and diagenesis typically result in alternating porous, fractured,
and low-permeability formations, layered porous and double-
porosity structures are especially pertinent. Because of inadequate
cementation, thin interfacial �uids, or microcracked transition
zones, the interfaces between these layers might not be fully
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bonded; instead, they reveal mechanical defects. Partial
bonding, interfacial slip, and displacement discontinuities can
be successfully modeled using spring-type imperfect interface
models, which were �rst introduced [17] and later used in porous
and multilayered media [18]. These models make it possible
to systematically measure the impact of interfacial sti�ness on
wave propagation, which is critical for accurate modeling of geo-
structural interfaces, designed layered composites, and cracked
reservoir systems.
In addition to the classical theories, several recent advances

have signi�cantly expanded the modelling capability of porous
and double-porosity media, including multiscale formulations
done [19–24], wave-induced �uid-�ow mechanisms [25–27], and
imperfect-interface models for layered or fractured geomaterials
[28–39].

Because their motion is only controlled by shear deformations
and is particularly sensitive to solid-frame rigidity, fracture density,
and interfacial bonding conditions, horizontally polarized shear
(SH) waves are especially well-suited to investigating such porous
and fractured media. SH-wave analysis in multi-layered porous
frameworks has yielded substantial insights intomode conversion,
attenuation, and wave dispersion in �uid-saturated formations
in recent years [40, 41]. Wave propagation in systems with
fracture porosity, matrix porosity, and poor coupling across
layers—a con�guration typically observed in true subsurface
environments—has, however, received very little study.
Inspired by these features, the current study studies SH-

wave propagation in a three-layered con�guration made up
of a higher viscous sandy layer, a �nite double-porosity layer,
and a bottom fracture half-space. In order to capture genuine
interfacial conditions between these distinct porous materials,
spring-type imperfect interfaces are created at the layer borders.
The generalized double-porosity framework is utilized to develop
the governing equations for each layer, and closed-form solutions
are discovered to establish the dispersion parameters of guided SH
waves. The purpose of this research is to elucidate how porosity,
fracture density, solid-�uid coupling, and interfacial sti�ness
interact to determine how shear waves travel through complicated
porous geological media.

2. Formulation of the Model

Fracture Half-space

Double-porosity Layer

Viscous Sandy Layer

X

Z

h2

h1

Figure 1. Schematic illustration of the proposed model.

2.1. Dynamics of the Viscous Sandy Layer
For the propagation of shear–horizontal (SH) waves in the viscous
sandy layer, the equation of motion can be expressed as [42]

)x�(s)12 + )z�(s)23 = �(s) )ttu(s)2 , (1)

where the shear stress components are related to the displacement
�eld through [42]

�(s)23 = �(s) )zu(s)2 , �(s)12 = �(s) �(s) )xu(s)2 . (2)

Here, �(s) denotes the rigidity modulus of the sandy layer, �(s) is a
dimensionless parameter representing shear viscosity, and �(s) is
the material density.

Assuming harmonic wave motion, we let

u(s)2 (x, z, t) = l1(z) e ik(x−ct), (3)

where k is the wave number and c is the common phase velocity
of propagation.

To account for the viscous nature of the medium, the e�ective
rigidity modulus �(s) is taken as

�(s) = �(s)0 + �(s)1 )t , (4)

where �(s)0 represents the elastic rigidity and �(s)1 characterizes the
internal frictional resistance of the viscous sandy medium.
Substituting Eq. (2) into Eq. (1), the governing equation for
SH–wave motion in the viscous sandy layer becomes

�(s)
[
�(s) )11u(s)2 + )33u(s)2

]
= �(s) )ttu(s)2 . (5)

Using the harmonic assumption from Eq. (3), Eq. (5) reduces to

d2l1(z)
dz2 + k2

[
c2(�(s))−2(1 − i�(s))−1 − �(s)

]
l1(z) = 0, (6)

where the parameters are de�ned as

(�(s))2 =
�(s)0
�(s)

, �(s) =
�(s)1 k c

�(s)0
. (7)

The general solution of Eq. (6) provides the non-vanishing
displacement component of the viscous sandy layer as

u(s)2 (x, z, t) =
[
A1 cos(Ω(s)z) + A2 sin(Ω(s)z)

]
e ik(x−ct), (8)

where A1 and A2 are arbitrary integration constants, and Ω(s) =
k
√
c2(�(s))−2(1 − i�(s))−1 − �(s).

�(s)23 =
[
− A1Ω(s) sin(Ω(s)z) + A2Ω(s) cos(Ω(s)z)

]
e ik(x−ct) (9)

2.2. Dynamics of the Dual–Porous Layer

Following [6], the equations of motion for a �uid–saturated
fractured porous layer are written as [43]

�(d)11 ü
(d)
2 + �(d)12 ü

(d)
m + �(d)13 ü

(d)
f +

(
�(d)12 + �(d)13

)
u̇(d)2 − �(d)12 u̇

(d)
m − �(d)13 u̇

(d)
f

= �(d)yj,j ,

�(d)12 ü
(d)
2 + �(d)22 ü

(d)
m + �(d)23 ü

(d)
f − �(d)12 u̇

(d)
2 +

(
�(d)12 + �(d)23

)
u̇(d)m − �(d)23 u̇

(d)
f

= −M(d)
p,y ,

�(d)13 ü
(d)
2 + �(d)23 ü

(d)
m + �(d)33 ü

(d)
f − �(d)13 u̇

(d)
2 − �(d)23 u̇

(d)
m +

(
�(d)13 + �(d)23

)
u̇(d)f

= −F(d)p,y .
(10)
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where u(d)2 , u(d)m , u(d)f denote the solid displacement, matrix-
pore �uid displacement, and fracture–pore �uid displacement,
respectively; �(d)ij and �(d)ij are the mass coe�cients and viscous
coupling coe�cients.

The macroscopic pressures satisfy

M(d)
p = V(d)

m Φ(d)
m m(d)

p , F(d)p = V(d)
f Φ(d)

p f(d)p , (11)

where V(d)
m + V(d)

f = 1, and Φ(d)
m , Φ(d)

f is the matrix and crack
porosity. Tortuosity vectors are denoted by �(d)t , �(d)m , �(d)f .

The constitutive relations for the cracked porous medium [6]
are expressed as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�(d)11
�(d)22
�(d)33
−m(d)

p

−f(d)p

�(d)23
�(d)31
�(d)12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [ N(d) 0
0 2G(d)I ]

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�(d)11
�(d)22
�(d)33
−m(d)

w

−f(d)w

�(d)23
�(d)31
�(d)12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (12)

where n(d)ij are poroelastic coe�cients, G(d) is the shear modulus,
�(d)ij are Stress components and �(d)11 are strain components and
N(d)
ij are drained elastic moduli, de�ned by

N(d) =

⎛
⎜
⎜
⎜
⎜
⎝

N(d)
11 N(d)

12 N(d)
13 n(d)14 n(d)15

N(d)
21 N(d)

22 N(d)
23 n(d)24 n(d)25

N(d)
31 N(d)

32 N(d)
33 n(d)34 n(d)35

n(d)41 n(d)42 n(d)43 n(d)44 n(d)45
n(d)51 n(d)52 n(d)53 n(d)54 n(d)55

⎞
⎟
⎟
⎟
⎟
⎠

.

The �uid contents in matrix pore and fracture pore satisfy [43]

m(d)
w = −V(d)

m Φ(d)
m ∇⋅(u(d)m −u(d)2 ), f(d)w = −V(d)

f Φ(d)
p ∇⋅(u(d)f −u(d)2 ).

(13)
The displacement components are written as

{u(d)2 , u(d)m , u(d)f } = {l2(z), l3(z), l4(z)} ei(kx−!t). (14)

By applying exponential variations in G(d)(z), �(d)ij (z), and �
(d)
ij (z),

and using Eqs. (10)-(14), the solid displacement is

u(d)2 = (A3e�
(d)
1 z + A4e�

(d)
2 z) ei(kx−!t), (15)

where
�(d)1 =

−�(d) + i
√
4
(d) − (�(d))2
2 ,

�(d)2 =
−�(d) − i

√
4
(d) − (�(d))2
2 .

(16)


(d) = �̄(d) !2

Ḡ(d)
− k2,

�̄(d) = �̄(d)11 +
i
!
(
�̄(d)12 + �̄(d)13

)

−

(
�̄(d)12 −

i
!
�̄(d)12

)2

�̄(d)22 +
i
!
�̄(d)12

−

(
�̄(d)13 −

i
!
�̄(d)13

)2

�̄(d)33 +
i
!
�̄(d)13

.

(17)

2.3. Dynamics of the Fracture Half-space

In this section, the porous fracture layer obtained from
the double–porosity reduction is treated as an e�ective
single–porosity poroelastic medium containing the solid skeleton
displacement u(f)2 (x, z, t) and the fracture–�uid displacement
U(f)
2 (x, z, t). Following the reduced constitutive structure of

the double–porosity model, we introduce the averaged mass
coe�cients �(f)11 , �

(f)
22 , �

(f)
12 , the viscous-drag coe�cient b(f)12 , the

e�ective shear modulus Ḡf , and the poroelastic parameters
K̄(f)
u , K̄(f), B̄(f). The increment of �uid content in the fracture

pores is denoted by �̄f , and e(f) is the volumetric strain of the
fracture skeleton.

The e�ective stress–strain–pressure relations for the fracture
layer read

�(f)ii = (K̄(f)
u − 2

3Ḡf) e(f) − K̄(f)
u B̄(f)�̄f + 2Ḡf ē

(f)
ii , (18)

�(f)ij = 2Ḡf ē
(f)
ij , (19)

−p̄f = K̄(f)
u B̄(f)e(f) − K̄(f)

u B̄(f)

K̄(f)
u − K̄(f)

�̄f . (20)

The dynamic balance of linear momentum for the solid and
fracture–�uid phases is expressed in matrix form as

(�
(f)
11 �(f)12
�(f)12 �(f)22

) (ü
(f)
2

Ü(f)
2

) + ( b(f)12 −b(f)12
−b(f)12 b(f)12

) (u̇
(f)
2

U̇(f)
2

)

=

⎛
⎜
⎜
⎜
⎝

Ḡf∇2u +
(
K̄(f)
u + 1

3
Ḡf

)
∇e(f) + B̄(f)K̄(f)

u ∇�̄f

K̄(f)
u B̄(f)∇e(f) − B̄(f)K̄(f)

u

K̄(f)
u − K̄(f)

∇�̄f

⎞
⎟
⎟
⎟
⎠

.

(21)

The left-hand side includes the solid–�uid inertial coupling and
the Darcy-type viscous drag, whereas the right-hand side contains
the shear restoring force, volumetric e�ects, and pore–�uid
coupling.

For a horizontally polarized shear (SH) wave propagating
along x, the tangential displacements of the solid and fracture
�uid are assumed in the time-harmonic form

u(f)2 (x, z, t) = l5(z) ei(kx−!t), U(f)
2 (x, z, t) = l6(z) ei(kx−!t).

(22)

Substituting (22) into the governing system From (21), one can
obtain

(−!
2�(f)11 − i!b(f)12 −!2�(f)12 + i!b(f)12

−!2�(f)12 + i!b(f)12 −!2�(f)22 − i!b(f)12
) (l5(z)l6(z)

)

=
⎛
⎜
⎝

Ḡf
d2l5(z)
dz2 − k2Ḡfl5(z)

0

⎞
⎟
⎠
.

(23)

Equation (23) simpli�es to the single second-order ODE

d2l5(z)
dz2 +m2

1 l5(z) = 0, (24)
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where the e�ective vertical wavenumberm1 is given by

m1 =

√
√√√√−k2 +

!2�(f)11 + i!b(f)12

Ḡf
−

(!2�(f)12 − i!b(f)12 )2

Ḡf (!2�
(f)
22 + i!b(f)12 )

. (25)

The general solution of (24) is

l5(z) = A5e im1z + A6e−im1z, (26)

and the corresponding fracture–�uid displacement is

l6(z) =
−!2�(f)12 + i!b(f)12

!2�(f)22 + i!b(f)12

l5(z). (27)

Hence, the solid displacement �eld in the fracture half-space
becomes

u(f)2 (x, z, t) = A6e− im1zei(kx−!t). (28)

3. Boundary Conditions

The mechanical boundary conditions applied to the layered
medium are speci�ed at the upper free surface z = −ℎ1 and
at the interface z = −ℎ2 between the adjoining layers.

At the upper surface z = −ℎ1, the Stress-free condition:

�(s)23 = 0. (29)

At the interface z = −ℎ2, continuity conditions due to the
presence of a spring type interface becomes:

�(s)23 = �1 (u(s)2 − u(d)2 ). (30)

�(s)23 = �(d)23 . (31)

Again, at the interface z = 0, continuity conditions due to the
presence of a spring type interface becomes:

�(d)23 = �2 (u(d)2 − u(f)2 ). (32)

�(d)23 = �(f)23 . (33)

To derive the dispersion relation, the displacement and shear
stress solutions for each layer are inserted into the relevant
boundary and interfacial conditions. The traction-free condition
at the upper surface and the spring-type imperfect continuity
conditions at the fracture-porous and porous-matrix interfaces
create a system of linear algebraic equations in the unknown
amplitude constants that is the same throughout. One can write
these equations in the compact matrix form as:

MA = 0, (34)

where

A =
[
A1 A2 A3 A4 A6

]T
,

1,2
,3

1,2
,3

1,2
,3

h /h =0.12 1
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_
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Figure 2. Scaled phase velocity c
�(s)

versus scaled wave number Re(kH).

and the non-vanishing components ofM are

M11 = sin
(
Ω(s)ℎ1

)
,

M12 = cos
(
Ω(s)ℎ1

)
,

M21 = Ω(s) sin
(
Ω(s)ℎ2

)
− �1 cos

(
Ω(s)ℎ2

)
,

M22 = Ω(s) cos
(
Ω(s)ℎ2

)
+ �1 sin

(
Ω(s)ℎ2

)
,

M23 = �1e−�
(d)
1 ℎ2 ,

M24 = �1e−�
(d)
2 ℎ2 ,

M31 = Ω(s) sin
(
Ω(s)ℎ2

)
,

M32 = Ω(s) cos
(
Ω(s)ℎ2

)
,

M33 = −Ḡ(d)�(d)1 e−(�(d)+�
(d)
1 )ℎ2 ,

M34 = −Ḡ(d)�(d)2 e−(�(d)+�
(d)
2 )ℎ2 ,

M43 = Ḡ(d)�(d)1 − �2, M44 = Ḡ(d)�(d)2 − �2, M45 = �2,

M53 = Ḡ(d)�(d)1 , M54 = Ḡ(d)�(d)2 , M55 = im1Ḡf .
(35)

Now, for non-trivial wave solutions to exist, the determinant
of the coe�cient matrix M must equal zero, which represents
the necessary dispersion relation that governs shear-horizontal
wave propagation in a multilayered double-porosity medium with
imperfect interfaces.

4. Numerical analysis

The impact of geometric con�guration and interfacial sti�ness
on SH–wave propagation in the considered multilayered system
is shown in Figures 2 and 3. For di�erent values of the non-
dimensional spring constants �̄1 and �̄2, which describe the
bonding conditions at the upper and lower interfaces, respectively,
the scaled phase velocity c∕c1 is plotted against the scaled
wavenumberRe(kH) in Fig. 2. Higher phase velocities result from
an increase in either �̄1 or �̄2, suggesting that sti�er interfaces
enable more e�cient shear-horizontal wave transmission across
the layers. The thickness ratioℎ2∕ℎ1 has an impact aswell. Higher
values of ℎ2∕ℎ1 lead to stronger dispersive behavior and, as a
result, lower phase velocities because of increasedmicrostructural
interaction within the dual-porous layer. The dispersive nature
of SH–waves in �uid-saturated porous composites is supported
by the curves’ consistent monotonic decay with increasing
wavenumber.

The corresponding variation of the attenuation coe�cient
log(�) with respect to Re(kH) is shown in Figure 3. As the
interfacial sti�ness parameters �̄1 and �̄2 increase, the attenuation

35 Applied Mathematical Biosystems



Dynamic Characteristics of Shear-Horizontal Waves in Porous Sandwich Systems Dholey et al.

1,2,3

h /h =0.12 1

h /h =0.32 1

h /h =0.62 1

1:
2:
3:

α =1x101
5

5

5
α =2x101

α =3x101

1:
2:
3:

_
_
_

α =1x102
5

5

5
α =2x102

α =3x102

1:
2:
3:

_
_
_

(a) (b) (c)

1,2,3
1,2,3

Figure 3. Attenuation coe�cient log � versus scaled wave number
Re(kH).

decreases, indicating that better bonding at the interfaces lowers
energy dissipation and improves wave penetration across the
layered structure. Also, a thicker dual-porous layer results in a
higher thickness ratio ℎ2∕ℎ1, which causes loss in too attenuation.
Together, these patterns demonstrate how strongly dispersion and
attenuation characteristics depend on interfacial integrity and
layer geometry, highlighting the crucial role that boundary and
microstructural features play in controlling SH-wave behavior in
complex porous media.

5. Conclusion

The study’s numerical results unequivocally show that in the
suggested multilayered dual-porous system, SH-wave dispersion
and attenuation are determined by both geometric con�guration
and interfacial sti�ness. Improved bonding at the interfaces
is represented by higher values of the non-dimensional
spring constants, which continuously raise phase velocity and
decrease attenuation, enabling more e�ective wave transmission
between the layers. On the other hand, because of stronger
solid–�uid coupling and viscous interactions within the dual-
porous medium, an increase in the thickness ratio ampli�es
attenuation and intensi�es dispersive e�ects. These results
demonstrate how SH-wave propagation is intrinsically sensitive to
�uid–solid interactions, interface conditions, and microstructural
characteristics.
The proposed model provides a practical framework for

geophysical exploration, subsurface characterization, reservoir
monitoring, and non-destructive assessment of �uid-saturated
layered formations. It takes into account dual-porosity,
viscous sandy behavior, and imperfect interfacial bonding.
The model o�ers important insights into wave–medium
interactions in heterogeneous geological settings by capturing the
intricate interactions between microstructural porosity, fracture
interactions, and interface imperfections. Anisotropic material
properties, frequency-dependent interfacial behavior, nonlinear
�uid–solid coupling, and 3D wave propagation e�ects could all
be added to this framework in future studies. Additionally, the
model could be validated using laboratory tests or �eld-scale
seismic observations. These extensions would increase SH-wave
analysis’s predictive power and expand its use in intricate porous
environments.
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