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Abstract

This paper develops an inventory model for Weibull-deteriorating items with price- and stock-dependent demand, incorporating partial
backlogging under inflation and time discounting over a finite horizon. The demand rate is defined as D(t) = 
−�p+
1I(t) when I(t) > 0
and D(t) = 
 − �p when I(t) ≤ 0, where 
 is the basic market demand, � the price sensitivity, p the selling price, 
1 the stock attraction
parameter, and I(t) the inventory level. Deterioration follows a two-parameter Weibull distribution �(t) = �d�dt�d−1, and shortages are
partially backlogged with rate S(�) = 1∕(1 + ��). The objective is to minimize the discounted total cost. The deterministic model is first
solved and then extended to a fuzzy environment by treating 
, �, and � as triangular fuzzy numbers, defuzzified using the expected
value method. Numerical examples and sensitivity analyses demonstrate that the fuzzy model offers greater stability under uncertainty,
making it suitable for short shelf-life products such as fashion goods and electronics.
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1. Introduction

Inventory systems for deteriorating products are of critical
importance in industries where items lose value over time due
to spoilage, obsolescence, decay, or evaporation, such as food
processing, pharmaceuticals, fashion retail, and electronic goods.
Classical inventory models initially assumed constant demand
and non-deteriorating items, which are rarely realistic in practical
situations (Harris, 1913) [1].
In real markets, demand is in�uenced by several operational

and marketing factors. In particular, selling price plays a
signi�cant role, as lower prices generally stimulate higher demand
(Dutta and Pal, 1991) [2]. Similarly, the quantity of goods
displayed a�ects customer perception and purchasing behavior,
leading to stock-dependent demand patterns commonly observed
in retail environments (Sarkar et al., 1997) [3]. Inventory
models that incorporate both price- and stock-dependent demand
therefore provide a more realistic representation of market
dynamics (Dutta and Pal, 2001) [4].

For many products, deterioration does not occur at a constant
rate but increases with time due to aging e�ects. The two-

parameter Weibull distribution o�ers a �exible framework for
modeling such time-dependent deterioration and has been widely
adopted in deteriorating inventory systems (Covert and Philip,
1973) [5]. When inventory decisions span a long planning horizon,
economic factors such as in�ation and the time value of money
further in�uence replenishment policies, making discounted cost
evaluation essential (Ray and Chaudhuri, 1997; Wee and Law,
2001) [6, 7].
Shortages are often unavoidable in practice due to demand

uncertainty or supply disruptions. During stock-out periods, not
all customers are willing to wait for replenishment, resulting in
partial backlogging and lost sales. A realistic approach assumes
that the proportion of backlogged demand decreases with waiting
time, which has been e�ectively modeled using time-dependent
backlogging functions (Chang and Dye, 1999) [8].

In addition to these operational complexities, many inventory
parameters—such as demand intensity, price sensitivity, and
backlogging behavior—are not precisely known and are subject
to managerial judgment or market uncertainty. Fuzzy set theory
provides a useful framework for handling such imprecision by
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representing uncertain parameters as fuzzy numbers rather than
�xed values (Mahata and Goswami, 2009) [9].
Motivated by these considerations, this paper develops an

inventory model that integrates price- and stock-dependent
demand, time-dependent Weibull deterioration, partial
backlogging of shortages, and in�ation within both crisp and
fuzzy environments. The crisp model formulates inventory
dynamics using di�erential equations and evaluates the present
value of total relevant costs over a �nite planning horizon. The
fuzzy extension captures parameter uncertainty and applies the
expected value method for defuzzi�cation.

The objective of the proposedmodel is to determine the optimal
replenishment cycle length and order quantity, allowing shortages,
so as to minimize the total inventory cost. Numerical illustrations
and sensitivity analyses demonstrate that the fuzzy model o�ers
improved robustness and stability under uncertain conditions,
making it particularly suitable for products with short life cycles
and volatile demand patterns.

2. Literature Review

The development of inventory theory began with the classical
Economic Order Quantity (EOQ) model assuming constant
demand, as proposed by Harris (1913) [1]. Recognizing
that demand patterns vary over time, Silver and Meal (1969)
[10] extended EOQ models to accommodate time-dependent
demand structures. More developments in fuzzy inventory
modeling include the work of Jana, Das, and Maiti (2013)
[11], who proposed a fuzzy EOQ model with backorders under
stock-dependent demand.
Subsequent studies incorporated market-driven demand

characteristics. Stock-dependent demand, re�ecting the in�uence
of displayed inventory on customer purchasing behavior, was
investigated by Sarkar et al. (1997) [12]. Price-dependent demand
models, capturing the inverse relationship between selling price
and demand, were developed by Dutta and Pal (1991) [2]. Later,
combined price- and stock-dependent demand models were
proposed by Dutta and Pal (2001) [4] andHou (2006) [13], o�ering
more realistic representations of retail environments.
Deterioration modeling also evolved signi�cantly. Covert

and Philip (1973) [5] introduced the two-parameter Weibull
distribution to represent time-dependent deterioration, providing
greater �exibility than constant-rate decay models. The
interaction between deterioration and �nancial considerations
was later examined by Wee and Law (2001) [7], who incorporated
in�ation and the time value of money into deteriorating inventory
systems.

The treatment of shortages progressed with the introduction of
partial backlogging models. Chang and Dye (1999) [8] proposed a
waiting-time-dependent backlogging rate, capturing customer
impatience during stock-out periods. This formulation was
further applied and re�ned by Kundu and Chakrabarti (2012)
[14] in deteriorating inventory environments.
The impact of in�ation and time-based discounting over a

�nite planning horizon was systematically studied by Ray and
Chaudhuri (1997) [15], emphasizing the importance of discounted
cost evaluation in long-term inventory decision-making.
To address uncertainty in system parameters, fuzzy inventory

models have been widely explored. Mahata and Goswami (2009)
[16] incorporated fuzziness into deteriorating inventory models
by representing key parameters as fuzzy numbers. Valliappan
and Uthayakumar (2010) [17] applied the signed distance

method for defuzzi�cation, while alternative approaches, such
as the expected value method, have been adopted for their
computational simplicity.
Despite these extensive studies, limited work has

simultaneously integrated price- and stock-dependent demand,
Weibull deterioration, partial backlogging, and in�ation within a
uni�ed fuzzy framework. The present study aims to bridge this
gap by developing a comprehensive model that addresses both
operational realism and parameter uncertainty.

3. Assumptions and Notations

3.1. Assumptions
The following assumptions are adopted to develop the proposed
inventory model:

1. A single deteriorating item is considered over a �nite
planning horizon H, which is divided into m identical
replenishment cycles, each of length

T = H
m.

2. The demand rate is both price-dependent and stock-
dependent, and is de�ned as

D(t) = {

 − �p + 
1I(t), if I(t) > 0,

 − �p, if I(t) ≤ 0,

where 
 denotes the basic market demand, � is the price
sensitivity parameter, p is the selling price (assumed constant
for simplicity), 
1 is the stock attraction parameter, and I(t)
represents the inventory level at time t.

3. The deterioration rate follows a two-parameter Weibull
distribution given by

�(t) = �d�dt�d−1,

where �d > 0 is the scale parameter (�d ≪ 1) and �d > 1 is
the shape parameter.

4. Shortages are permitted and partially backlogged. The
backlogging rate is a decreasing function of the waiting time
� and is expressed as

S(�) = 1
1 + �� ,

where � > 0 is the backlogging parameter. The term 1−S(�)
represents the fraction of lost sales.

5. In�ation and the time value of money are considered. The
net discount rate is de�ned as

R = r − i,

where r denotes the in�ation rate and i denotes the interest
(or discount) rate.

6. Replenishment is instantaneous, and the lead time is
assumed to be zero.

7. Deteriorated items are withdrawn immediately from
inventory and are neither repaired nor replaced.

8. In the fuzzy environment, the parameters 
, �, and � are
assumed to be triangular fuzzy numbers.

3.2. Notations
• T: The replenishment cycle.
• T1: Time inventory zeros in a cycle.
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• Q: The order quantity during a cycle of length T.
• I(t): On-hand inventory level at time t during any cycle.
• Co: The ordering cost per order of the inventory per cycle.
• Cℎ: The holding cost per unit per unit time in a cycle.
• Cd: The deterioration cost per unit per cycle.
• Cs: The shortage cost per unit per unit time (backlogged).
• Cl: The lost sales cost per unit per cycle.
• PVTC: The present value of total cost.
• P̂VTC: The fuzzy present value of total cost.

4. Crisp Model Formulation

Suppose that when the inventory level is positive, the demand rate
depends on 
 − �p + 
1I(t),whereas for negative inventory levels,
the demand (backlogging) rate is given by 
 − �p. Therefore,
the no-shortage period occurs over the interval [0, T1] of the
scheduling period T, while shortages are partially backlogged
during the interval [T1, T]. The behavior of this inventory system
is illustrated in Fig. 1.

Figure 1. Graphical representation of the Inventory Model.

The �rst replenishment lot size Q is received at time t = 0.
During the time interval [0, T1], the inventory level decreases due
to the combined e�ects of stock- and price-dependent demand
and item deterioration, and reaches zero at t = T1. During the
time interval [T1, T], shortages occur and are accumulated until
time t = T, at which point they are backordered. Therefore, the
inventory system at any time t can be represented by the following
di�erential equations:
For 0 ≤ t ≤ T1, the inventory level satis�es

dI(t)
dt = −D(t) − �(t)I(t) = −

(

 − �p + 
1I(t)

)
− �d�dt�d−1I(t),

(1)
with the boundary conditions

I(0) = Imax and I(T1) = 0.

Using these conditions, the solution of Eq. (1) is obtained as

I(t) = (
 −�p) [(T1 − t) − �
2
(
T21 − t2

)
−

�d�d
�d + 1

(
T�d+11 − t�d+1

)
] ,

(2)
and the maximum inventory level is given by

Imax = (
 − �p) [T1 −
�
2T

2
1 −

�d�d
�d + 1

T�d+11 ] . (3)

For T1 ≤ t ≤ T, shortages occur with partial backlogging:

During the shortage period, the rate of change of inventory is
governed by

dI(t)
dt = −


 − �p
1 + �(T − t)

, (4)

where D(t) = 
 − �p, S(�) = 1
1 + �� , and � = T − t. Using the

boundary conditions

I(T1) = 0 and I(T) = Smax ,

the solution of Eq. (4) is obtained as

I(t) = −(
 − �p) [(t − T1) − � {T(t − T1) − ( t
2

2 −
T21
2 )}] , (5)

and the maximum shortage level is given by

Smax = −(
 − �p) [(T − T1) − � {T(T − T1)

− (T
2

2 −
T21
2 )}] . (6)

The lot size during the total time interval [0, T] is given by

Q = Imax + Smax

= (
 − �p) [T1 −
�
2T

2
1 −

�d�d
�d + 1

T�d+11 ]

−(
 − �p) [(T − T1) − � {T(T − T1) − (T
2

2 −
T21
2 )}] . (7)

According to the above discussion, the following cost functions
can be derived. The present value of the ordering cost is PVoc =
Co e−RT . The holding cost applies only when the inventory level
is positive, that is, over the interval [0, T1]. Therefore, the present
value of the holding cost is PVℎc = Cℎ ∫

T1
0 I(t)e−Rt dt, which,

upon simpli�cation, yields

PVℎc = Cℎ(
 − �p)[
T21
2 − �

3T
3
1 −

�d�d
�d + 2

T�d+21

−R {
T31
6 − �

8T
4
1 −

�d�d
2(�d + 3)

T�d+31 }]. (8)

The present value of deterioration cost is incurred only during the
positive inventory phase. The number of units deteriorated at time
t is given by �(t)I(t). Hence, the present value of deterioration
cost per cycle is PVdc = Cd ∫

T1
0 �(t)I(t)e−Rt dt, which, after

simpli�cation, yields

PVdc = Cd�d�d(
 − �p)[ 1

�d(�d+1)
T�d+11 − 
1

�d(�d+2)
T�d+21

− �d
2�d+1

T2�d+11 − R{ 1

(�d+1)(�d+2)
T�d+21 − 
1

(�d+1)(�d+3)
T�d+31

− �d�d
(�d+1)(2�d+2)

T2�d+21 }]. (9)

The present value of shortage cost applies to backlogged shortages
during the interval [T1, T]. Therefore, the present value of
shortage cost is given by PVsc = Cs ∫

T
T1

[
−I(t)

]
e−Rt dt, which
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simpli�es to

PVsc = Cs(
 − �p)
[ 1
2
(T2 − T21) − T1(T − T1) − �

{ T
2
(T2

−T21) − TT1(T − T1) −
1

6
(T3 − T31) +

T21
2
(T − T1)

}

−R
[ 1
3
(T3 − T31) −

T1
2
(T2 − T21) − �

{ T
3
(T3 − T31)

− TT1
2
(T2 − T21) −

1

8
(T4 − T41) +

T21
4
(T2 − T21)

}]]
. (10)

Lost sales occur during the shortage phase for the fraction of
demand that is not backlogged. Hence, the present value of lost
sales cost per cycle is expressed as PVlc = Cl ∫

T
T1
D(t)

[
1 − S(T −

t)
]
dt, which simpli�es to

PVlc = �(
 − �p)
[
(T − �T2)(T − T1)

+2�T − 1
2 (T2 − T21) −

�
3 (T

3 − T31)
]
. (11)

Therefore the present value total cost per cycle is, Total PVTC(T1)=
PVOC (PVoc) + PV Holding Cost (PVℎc) + PV Deterioration Cost
(PVdc) + PV Shortage Cost (PVsc) + PV Lost Sales Cost (PVlc).
Hence, total PVTC(T1) becomes

Coe−RT + Cℎ(
 − �p)[ T
2
1
2
− �

3
T31 −

�d�d
�d+2

T�d+21

−R { T
3
1
6
− �

8
T41 −

�d�d
2(�d+3)

T�d+31 }] + Cd�d�d(
 − �p)

×[ 1

�d(�d+1)
T�d+11 − 
1

�d(�d+2)
T�d+21 − �d

2�d+1
T2�d+11

− R

�d+1
{ 1

�d+2
T�d+21 − 
1

�d+3
T�d+31 − �d�d

2�d+2
T2�d+21 }]

+Cs(
 − �p)[ 1
2
(T2 − T21) − T1(T − T1)

−�
{ T
2
(T2 − T21) − TT1(T − T1) −

1

6
(T3 − T31)

+ T21
2
(T − T1)} − R

[ 1
3
(T3 − T31) −

T1
2
(T2 − T21)

−�
{ T
3
(T3 − T31) −

TT1
2
(T2 − T21) −

1

8
(T4 − T41)

+ T21
4
(T2 − T21)}

]
] + �(
 − �p)[(T − �T2)(T − T1)

+ 2�T−1

2
(T2 − T21) −

�

3
(T3 − T31)]. (12)

5. Fuzzy Extensions

5.1. Mathematical preliminaries
To defuzzify using the Graded Mean Representation method,
certain de�nitions are required.
De�nition: Consider the universe of discourse as X. A fuzzy set
Ã on X is de�ned by the ordered pairs

Ã = {(x, �Ã(x)) ∶ x ∈ X},

where the membership function is �Ã(x) → [0, 1].
De�nition: The de�nition of �-cut of Ã is as follows:

A� = {x ∶ �Ã(x) = �, � ≥ 0}.

De�nition: Ã is called normal if there exists x ∈ X such that
�Ã(x) = 1.

De�nition: A fuzzy triangular number Ã is de�ned by

Ã = (a11, b11, c11),

and its membership function �Ã(x) is de�ned by

�Ã(x) =

⎧
⎪

⎨
⎪
⎩

L−1(ℎ) =
x − a11
b11 − a11

, a11 ≤ x ≤ b11,

R−1(ℎ) =
c11 − x
c11 − b11

, b11 ≤ x ≤ c11,

0, otherwise.

When a11 = b11 = c11, then the fuzzy point is

(a11, a11, a11) = Ã.

Let Fn be the set of all fuzzy triangular numbers on the real
numbers set ℝ and is denoted by

Fn = {(a11, b11, c11) ∶ a11 ≤ b11 ≤ c11, ∀ a11, b11, c11 ∈ ℝ}.

The �-cut of Ã = (a11, b11, c11) ∈ Fn, 0 ≤ � ≤ 1, is

A(�) = [AL(�), AR(�)],

where

AL(�) = a11 + (b11 − a11)�, AR(�) = c11 − (c11 − b11)�

are the left end point and right end point of A(�) respectively.

De�nition: If Ã = (a11, b11, c11) is a fuzzy triangular number,
then the mean graded integration of Ã is de�ned as

P(Ã) =
∫ 1
0 ℎ (

L−1(ℎ) + R−1(ℎ)
2 ) dℎ

∫ 1
0 ℎ dℎ

,

=
∫ 1
0 ℎ [a11 + (b11 − a11)ℎ + c11 − (c11 − b11)ℎ] dℎ

2∫ 1
0 ℎ dℎ

,

=
a11 + 4b11 + c11

6 . (13)

5.2. Fuzzy Model

Due to uncertainty, it is di�cult to give a speci�ed value for a
speci�c cost parameter in the surroundings; for this reason, we
have taken some of cost parameters 
, �, � as triangular fuzzy
numbers. Here,


̃ = (
1, 
2, 
3), �̃ = (�1, �2, �3), �̃ = (�1, �2, �3)

and

P̃VTC(T1) =
(
P̃VTC1(T1), P̃VTC2(T1), P̃VTC3(T1)

)
. (14)
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Now the total fuzzy cost is given by

MinP̃VTC(T1) = Coe−RT + Cℎ(
̃ − �̃p)[
T21
2 − �̃

3 T
3
1 −

�d�d
�d + 2

T�d+21

− R
⎧

⎨
⎩

T31
6 − �̃

8 T
4
1 −

�d�d
2(�d + 3)

T�d+31

⎫

⎬
⎭

] + Cd�d�d(
̃ − �̃p)

× [ 1
�d(�d + 1)

T�d+11 −

1

�d(�d + 2)
T�d+21 −

�d
2�d + 1

T2�d+11

− R { 1
(�d + 1)(�d + 2)

T�d+21 −

1

(�d + 1)(�d + 3)
T�d+31

−
�d�d

(�d + 1)(2�d + 2)
T2�d+21 } ] + Cs(
̃ − �̃p)[ 12 (T

2 − T21 )

− T1(T − T1) − �̃ { T2 (T
2 − T21 ) − TT1(T − T1) −

1
6 (T

3 − T31 )

+
T21
2 (T − T1)

⎫

⎬
⎭

− R
[ 1
3 (T

3 − T31 ) −
T1
2 (T2 − T21 ) − �̃ { T3 (T

3

− T31 ) −
TT1
2 (T2 − T21 ) −

1
8 (T

4 − T41 ) +
T21
4 (T2 − T21 )

⎫

⎬
⎭

]
] + �̃(
̃ − �̃p)

× [(T − �̃T2)(T − T1) +
2�̃T − 1

2 (T2 − T21 ) −
�̃
3 (T

3 − T31 )].

(15)

By graded mean representation method we defuzzify the fuzzy
total cost P̃VTC(T1) and the fuzzy cost parameters 
̃, �̃, �̃ as
follows:

P̂VTC(T1) =
1
6
[
P̂VTC1(T1) + 4P̂VTC2(T1) + P̂VTC3(T1)

]
,

where,

P̂VTC1(T1) = Coe−RT + Cℎ
(

̂1 − �̂1p

)
[
T21
2 −

�̂1
3 T31 −

�d�d
�d + 2

T�d+21

− R
⎧

⎨
⎩

T31
6 −

�̂1
8 T41 −

�d�d
2(�d + 3)

T�d+31

⎫

⎬
⎭

] + Cd�d�d
(

̂1 − �̂1p

)

× [ 1
�d(�d + 1)

T�d+11 −

1

�d(�d + 2)
T�d+21 −

�d
2�d + 1

T2�d+11

− R
�d + 1

{ 1
�d + 2

T�d+21 −

1

�d + 3
T�d+31 −

�d�d
2�d + 2

T2�d+21 } ]

+ Cs
(

̂1 − �̂1p

)
[ 12 (T

2 − T21 ) − T1(T − T1) − �̂1 { T2 (T
2 − T21 )

−TT1(T − T1) −
1
6 (T

3 − T31 ) +
T21
2 (T − T1)

⎫

⎬
⎭

− R[ 13 (T
3 − T31 )

−
T1
2 (T2 − T21 ) − �̂1 { T3 (T

3 − T31 ) −
TT1
2 (T2 − T21 ) −

1
8 (T

4 − T41 )

+
T21
4 (T2 − T21 )

⎫

⎬
⎭

]] + �̂1
(

̂1 − �̂1p

)
[
(
T − �̂1T2

)
(T − T1)

+
2�̂1T − 1

2 (T2 − T21 ) −
�̂1
3 (T3 − T31 )].

(16)

P̂VTC2(T1) = Coe−RT + Cℎ
(

̂2 − �̂2p

)
[
T21
2 −

�̂2
3 T31 −

�d�d
�d + 2

T�d+21

− R
⎧

⎨
⎩

T31
6 −

�̂2
8 T41 −

�d�d
2(�d + 3)

T�d+31

⎫

⎬
⎭

] + Cd�d�d
(

̂2 − �̂2p

)

× [ 1
�d(�d + 1)

T�d+11 −

1

�d(�d + 2)
T�d+21 −

�d
2�d + 1

T2�d+11

− R
�d + 1

{ 1
�d + 2

T�d+21 −

1

�d + 3
T�d+31 −

�d�d
2�d + 2

T2�d+21 } ]

+ Cs
(

̂2 − �̂2p

)
[ 12 (T

2 − T21 ) − T1(T − T1)

− �̂2
⎧

⎨
⎩

T
2 (T

2 − T21 ) − TT1(T − T1) −
1
6 (T

3 − T31 ) +
T21
2 (T − T1)

⎫

⎬
⎭

− R[ 13 (T
3 − T31 ) −

T1
2 (T2 − T21 )

− �̂2
⎧

⎨
⎩

T
3 (T

3 − T31 ) −
TT1
2 (T2 − T21 ) −

1
8 (T

4 − T41 ) +
T21
4 (T2 − T21 )

⎫

⎬
⎭

]]

+ �̂2
(

̂2 − �̂2p

)
[
(
T − �̂2T2

)
(T − T1) +

2�̂2T − 1
2 (T2 − T21 ) −

�̂2
3 (T3 − T31 )].

(17)

P̂VTC3(T1) = Coe−RT + Cℎ
(

̂3 − �̂3p

)
[
T21
2 −

�̂3
3 T31 −

�d�d
�d + 2

T�d+21

− R
⎧

⎨
⎩

T31
6 −

�̂1
8 T41 −

�d�d
2(�d + 3)

T�d+31

⎫

⎬
⎭

] + Cd�d�d
(

̂3 − �̂3p

)

× [ 1
�d(�d + 1)

T�d+11 −

1

�d(�d + 2)
T�d+21 −

�d
2�d + 1

T2�d+11

− R
�d + 1

{ 1
�d + 2

T�d+21 −

1

�d + 3
T�d+31 −

�d�d
2�d + 2

T2�d+21 } ]

+ Cs
(

̂3 − �̂3p

)
[ 12 (T

2 − T21 ) − T1(T − T1)

− �̂3
⎧

⎨
⎩

T
2 (T

2 − T21 ) − TT1(T − T1) −
1
6 (T

3 − T31 ) +
T21
2 (T − T1)

⎫

⎬
⎭

− R[ 13 (T
3 − T31 ) −

T1
2 (T2 − T21 ) − �̂3 { T3 (T

3 − T31 )

−
TT1
2 (T2 − T21 ) −

1
8 (T

4 − T41 ) +
T21
4 (T2 − T21 )

⎫

⎬
⎭

]] + �̂3
(

̂3 − �̂3p

)

× [
(
T − �̂3T2

)
(T − T1) +

2�̂3T − 1
2 (T2 − T21 ) −

�̂3
3 (T3 − T31 )].

(18)

5.3. Solution Procedure

To �nd the best value of T1 and P̂VTC(T1), we must have

d P̂VTC(T1)
dT1

= 0,
d2 P̂VTC(T1)

dT21
> 0.

5.4. Method for finding Total Cost in Crisp Model
Firstly, we �nd the total PVTC in a crisp environment from
equation (12). Then, applying fuzzy arithmetic on some cost
parameters, also in triangular fuzzy numbers, we compute the
fuzzy total PVTC from equation (13). After defuzzifying using
the graded mean integration method, we �nd the minimized total
PVTC.

6. Numerical Illustration

Numerical examples are solved for both crisp and fuzzy
environments to obtain the optimal T1 and minimum total cost.
6.1. In Crisp Environment
We have taken the value of cost parameters as p = 20, � = 5, 
 =
10, 
1 = 0.015, � = 15, C0 = 3, T = 0.9, R = 0.2, Cℎ = 10, �d =
0.1, �d = 1.8, Cd = 11, and Cs = 5. Now solving equation (12),
we get

T1 = 0.4435608

and the value of optimum total

PVTC(T1) = 286.3966.
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6.2. In Fuzzy Environment

Here we are taking p = 20, � = (1, 5, 9), 
 = (10, 14, 30), 
1 =
0.015, � = (15, 20, 25), C0 = 3, T = 0.9, R = 0.2, Cℎ = 10, �d =
0.1, �d = 1.8, Cd = 11, and Cs = 5. Now solving equation (14)
with the help of equations (13), (15), (16), and (17), we get

T1 = 0.4435608

and the value of optimum total

PVTC(T1) = 378.4312.

7. Sensitivity Analysis

Now we are interested to see how the present value of total cost
(PVTC) changes when some of the values of di�erent parameters
are changed.

Firstly, we are considering � (the backlogging parameter) and
trying to �nd the e�ect of the relevant parameter on the total
present value of total cost in the crisp case. Here, we are taking
other parameter values as they were. Let us take p = 20, 
 =
10, 
1 = 0.015, � = 15, C0 = 3, T = 0.9, R = 0.2, Cℎ = 10, �d =
0.1, �d = 1.8, Cd = 11, and Cs = 5.

Table 1. Sensitivity analysis of the backlogging parameter �
The backlogging parameter (�) T1 PVTC(T1)

5 0.4435608 286.3966
5.1 0.4443857 305.0152
6 0.4520748 479.9748
6.2 0.4538100 520.5907
6.5 0.4564102 582.6362

From the above Table 1 we clearly see that total PVTC is
increases proportionally to the backlogging parameter (�). From
the below chart 1 (see Fig.2) it is also clear that total PVTC is
increases proportionally to the backlogging parameter (�).

Figure 2. Chart 1, which shows the total PVTC is increases proportionally
to the backlogging parameter (�).

Secondly, we are considering � (the price sensitivity parameter)
and trying to �nd the e�ect of relevant parameter in total present
value of total cost in crisp. Here , we are taking other parameters
values as it was. Let us take p = 20, � = 5, 
1 = 0.015, 
 =
10, C0 = 3, T = 0.9, R = 0.2, Cℎ = 10, �d = 0.1, �d = 1.8, Cd =
11, and Cs = 5.

Table 2. Sensitivity analysis of the price sensitivity parameter �
The price sensitivity T1 PVTC(T1)

parameter (�)
15 0.4435608 286.3966
20 0.4435608 384.3058
22 0.4435608 423.4695
25 0.4435608 482.2150
30 0.4435608 580.1241

From the above Table 2 we clearly see that total PVTC is
increases proportionally to the price sensitivity parameter (�).
From the below chart 2 (see Fig. 3) it is also clear that total PVTC
is increases proportionally to the price sensitivity parameter (�).

Figure 3. Chart 2, which shows the total PVTC is increases proportionally
to the price sensitivity parameter (�).

Finally, we are considering 
 (the basic market demand
parameter) and trying to �nd the e�ect of relevant parameter
in total present value of total cost in crisp. Here , we are taking
other parameters values as it was. Let us take p = 20, � = 5, 
1 =
0.015, � = 15, C0 = 3, T = 0.9, R = 0.2, Cℎ = 10, �d =
0.1, �d = 1.8, Cd = 11, and Cs = 5.

Table 3. Sensitivity analysis of the basic market demand parameter 

The basic market demand T1 PVTC(T1)

parameter (
)
5 0.4435608 291.2921
10 0.4435608 286.3966
20 0.4435608 276.6057
30 0.4435608 266.8148
40 0.4435608 257.0239

From the above Table 3we clearly see that total PVTC is inversly
proportional to the basic market demand parameter (
). From the
below chart 3 (see Fig. 4) it is also clear that total PVTC is inversly
proportional to the basic market demand parameter (
).
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Figure 4. Chart 3, presented to show the total PVTC is inversly
proportional to the basic market demand parameter (
).

8. Conclusion

This study develops a comprehensive inventory model for
Weibull-deteriorating items under price- and stock-dependent
demand in the presence of in�ation, time discounting, and
partial backlogging of shortages. By integrating fuzzy and
intuitionistic fuzzy frameworks into the classical crisp model, the
proposed approach e�ectively captures real-world uncertainty
in key parameters such as market demand, price sensitivity,
and backlogging behavior. The use of the expected value
method enables practical defuzzi�cation and determination of
optimal replenishment policies. Numerical illustrations and
sensitivity analyses demonstrate that intuitionistic fuzzy models
yieldmore robust and stable solutions compared to crisp and fuzzy
counterparts, particularly under high uncertainty. These �ndings
con�rm that the proposed model is well suited for managing
inventories of short-life-cycle and highly volatile products, such
as fashion goods and electronic items, thereby o�ering valuable
managerial insights and improved decision support in uncertain
business environments.
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