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Abstract

In this paper, we investigate a three-dimensional nonlinear cancer model describing the interactions among cancer cells, normal cells, and
immune cells, incorporating a time delay to account for the delayed activation of the immune response. We first establish the biological
feasibility of the model by proving the boundedness of its solutions. The equilibrium points of the system are determined, and their local
stability is analyzed. Treating the time delay as a bifurcation parameter, we derive conditions for the occurrence of Hopf bifurcation,
demonstrating that an increase in the delay can destabilize the system and induce oscillatory behavior. Numerical simulations are
performed to validate the analytical findings and to illustrate rich dynamical phenomena, including limit cycle oscillations, period-doubling
bifurcations, and chaotic dynamics. These results highlight the significant role of immune activation delay in shaping cancer dynamics.
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1. INTRODUCTION

Cancer is one of the most hazardous and life-threatening diseases
worldwide and remains a major public health challenge [1]. It is
a broad class of diseases characterized by uncontrolled growth of
abnormal cells that can invade surrounding tissues and spread
to distant organs. Cancer is the second leading cause of death
globally after cardiovascular diseases, accounting for nearly one
in six deaths each year. According to the International Agency
for Research on Cancer (IARC), approximately 12.7 million new
cancer cases and 7.6 million cancer-related deaths were reported
worldwide in 2008. In 2020 alone, cancer caused nearly ten
million deaths globally, with lung, breast, colorectal, prostate,
stomach, and skin cancers being among the most prevalent types.
This burdenhas continued to increase, with projections estimating
21.4 million new cases and 13.2 million deaths annually by 2030,
primarily due to population growth, aging, and epidemiological
transitions in developing countries [2].

Cancer treatment typically involves a combination of
surgery, radiotherapy, chemotherapy, hormone therapy, and
immunotherapy, with the choice of therapy depending on the
cancer type, stage, and location. Early diagnosis remains crucial,
as treatment outcomes are signi�cantly improved when cancer
is detected at an initial stage. Despite considerable advances
in clinical oncology, cancer progression is governed by highly
complex and nonlinear biological processes, including tumor
growth, immune surveillance, angiogenesis, mutation, and

interactions within the tumor microenvironment. Conventional
therapies such as chemotherapy and ionizing radiation have
long been employed to reduce tumor burden and, in some cases,
achieve remission. However, tumor relapse frequently occurs due
to the emergence of drug-resistant cancer cells, highlighting the
limitations of monotherapy approaches and the need for more
e�ective and targeted treatment strategies.
An appealing alternative and complementary approach to

conventional therapies is immunotherapy, which aims to
stimulate the body’s immune system to recognize and eliminate
cancer cells. The pioneering work of William Coley in the
1890s marked the earliest use of immunotherapy, employing
bacterial toxins to induce anti-tumor immune responses [3]. More
recently, cancer-preventive vaccines against hepatitis B virus and
human papillomavirus have demonstrated remarkable success
in reducing cancer incidence [4, 5]. In parallel, anti-angiogenic
therapy, �rst proposed by Folkman [6], targets the tumor’s blood
supply by inhibiting angiogenesis, with vascular endothelial
growth factor (VEGF) identi�ed as a key regulator. Drugs
such as bevacizumab have shown clinical e�cacy, particularly
when administered in combination with chemotherapy [7, 8, 9].
Nevertheless, these treatments may also a�ect healthy cells, and
their overall e�ectiveness varies across cancer types.
The increasing complexity of therapeutic strategies has

motivated the development of mathematical models as powerful
tools for understanding cancer dynamics and optimizing
treatment protocols. Mathematical modeling provides a
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quantitative framework to integrate biological mechanisms,
analyze tumor growth patterns, evaluate treatment responses,
and design optimal therapy schedules. Several models have
been proposed to study chemotherapy, immunotherapy, and
anti-angiogenic treatments [10, 11, 12], although many neglect
interactions with the tumor microenvironment or treatment-
induced delays. Incorporating time delays into cancer models
allows for a more realistic representation of biological latency
and delayed immune or therapeutic responses [13]. Despite
signi�cant progress, accurate estimation of biological parameters
from experimental or clinical data remains a major challenge.
Consequently, the development of comprehensive mathematical
models that integrate multiple treatment modalities and
tumor–host interactions continues to be an active and essential
area of research aimed at improving cancer management and
patient outcomes.
Time delays are intrinsic to biological systems and arise

from the �nite time required for physiological, biochemical,
and cellular processes to occur. In epidemiological modeling,
incubation delays describe the latent period between pathogen
exposure and the onset of infectiousness, whereas gestation delays
represent the time lag between conception and birth, both of
which play a fundamental role in shaping population dynamics
[14, 15, 16, 17, 18, 19, 20, 21, 22]. Extensive studies on delayed
predator–prey and multi-species systems further highlight the
signi�cance of delays in biological interactions; for instance,
Beretta and Takeuchi examined the global stability of delayed
Lotka–Volterra models with di�usion [23]. In medical and
pharmacological settings, treatment or medication delays emerge
due to delayed drug administration, absorption, distribution, and
therapeutic response, signi�cantly in�uencing disease control and
treatment outcomes [24]. Additional delays arise from immune
activation, cell di�erentiation, gene expression, and intracellular
signaling pathways, introducing memory e�ects into biological
systems and often leading to non-trivial dynamics [25]. In cancer
modeling, time delays are particularly important for capturing
tumor cell cycle durations, delayed immune surveillance, latency
in angiogenesis, and postponed responses to chemotherapy or
immunotherapy [13, 26, 27, 28]. Incorporating such delays
into mathematical models frequently results in richer dynamics,
including stability switches, oscillatory behavior, and Hopf
bifurcations, thereby providing a more realistic description of
biological processes and valuable insights into optimal therapeutic
strategies [15, 25].

The inclusion of time delays can profoundly alter the dynamical
behavior of cancer models, giving rise to complex phenomena
such as sustained oscillations, bifurcations, multistability, and
even deterministic chaos. These dynamical features may help
explain irregular tumor growth, tumor recurrence, and multiple
disease states observed in clinical practice. Time delays can
destabilize an otherwise stable equilibriumor, conversely, stabilize
an unstable system, thus playing a decisive role in determining
long-term system behavior [1]. In the context of cancer modeling,
Galach [29] introduced time delay into the Kuznetsov–Taylor
cancer–immune interaction model [30] to better re�ect biological
realism [31]. These studies collectively demonstrate that time
delays are not merely mathematical artifacts but essential
components for accurately capturing the complexity of cancer
dynamics.
In this present work, we study a three-dimensional cancer

model with and without time delay. This paper is arranged as
follows: In Section 2, we formulate a mathematical model on

the basis of some biological assumptions and hypotheses. In
Section 3, we provide general stability anlysis of the non-delayed
model. Hopf bifurcation analysis has been carried out of the
non-delayed system in Section 4. In Section 5, we modify our
model introducing time-delay in the proliferation of immune
cells and analyze the delayed cancer model. In Section 6, we
perform numerical simulations of the non-delayed as well as
delayed cancer model. Finally in Section 7, we brie�y conclude
with our main �ndings.

2. Cancer model

Here C,N, and I represent the populations of cancer cells, normal
cells, and immune cells respectively at time t. The parameters
r1 and r2 symbolized the growth rate of cancer cells and normal
cells, respectively.

The model describes the interactions between cancer cells (C),
normal cells (N), and immune cells (I), incorporating logistic
growth and various interaction coe�cients. Cancer cells grow
logistically, but their growth is limited by competition with
normal cells at rate a and destruction by immune cells at rate
b. The normal cells also exhibit logistic growth, in�uenced by
the presence of cancer cells, which activate their growth, while
radiotherapy destroys them. The parameter d represents the rate
at which normal cell decline due to in�uence of cancer cells. In
this context, the term eCI

C + f represents the activation and growth

of immune system in response to the presence of cancer cells.
Here, e denotes the maximum growth rate of e�ector cells and
f is the half-saturation constant. And g represents the rate of
inactivation of immune cells and ℎ denotes the rate of mortality
of immune cells.

Therefore, the model can be written as

dC
dt = r1C(1 − C) − aCN − bCI,

dN
dt = r2N(1 − N) − dCN,

dI
dt = eCI

C + f − gCI − ℎI.

(2.1)

The above model (2.1) has to be analyzed with the initial the
condition C(0) ≥ 0, N(0) ≥ 0 and I(0) ≥ 0.

2.1. Preliminary results

Boundness:

Theorem 2.1 All the solutions of the above system (2.1) initiate in
R3+ are uniformly bounded.

Proof: Let us de�neW(C,N, I) = C + N + I.
The time derivative ofW is

dW
dt = dC

dt +
dN
dt + dI

dt
= r1C(1 − C) − aCN − bCI + r2N(1 − N) − dCN
+ eCI

C+f
− gCI − ℎI

≤ r1C − r1C2 + r2N + r2N2 + eI − ℎI.
(2.2)

Applied Mathematical Biosystems 2



Pathak et al. A mathematical model of cancer

Now,

dW
dt + �W = r1C − r1C2 + �C + r2N − r2N2 + �N

+�I + (e − ℎ)I
= (r1 + �)C − r1C2 + (r2 + �)N − r2N2

+�I + (e − ℎ)I
≤ −r1C2 + (r1 + �)C − r2N2 + (r2 + �)N

= −r1 (C −
r1 + �
2r1

)
2

+
(r1 + �)2
4r1

−r2 (N −
r2 + �
2r2

)
2

+
(r2 + �)2
4r2

.

Which implies
dW
dt + �W ≤ L, (2.3)

where L = L1 + L2 and 0 < � < (ℎ − e) with L1 =
(r1 + �)2
4r1

and

L2 =
(r2 + �)2
4r2

.

Applying the theory of di�erential inequality [32], we obtain

0 < W(C,N, I) ≤ L
� + e−�t [W(C(0), N(0), I(0)) − L

� ] .

For t → ∞, 0 < W(C,N, I) ≤ L
� .

Hence we observe that the sum of three variables is bounded,
which implies that each individual variable is bounded. Therefore,
the entire system is bounded.

3. General stability analysis

3.1. Equilibrium points

The system (2.1) has �ve types of biologically feasible equilibrium
points. The equilibrium points are given below:

(i) The trivial equilibrium point E0(0, 0, 0) always exists.
(ii)The axial equilibrium point E1(0, 1, 0) exists.
(iii)The axial equilibrium point E2(1, 0, 0) exists.
(iv)The planer equilibrium point E3(C̄, N̄, 0), where

C̄ =
r2(r1 − a)
ad − r1r2

,

N̄ =
r1(d − r2)
ad − r1r2

.
(3.1)

(v) The interior equilibrium point E∗(C∗, N∗, I∗) where C∗, N∗, I∗
are positive and satisfy the following relation

r1 − r1C∗ − aN∗ − bI∗ = 0,
r2 − r2N∗ − dC∗ = 0,
eC∗

C∗+f
− gC∗ − ℎ = 0.

(3.2)

Solving the above system of equations (3.2) we obtain,

C∗ =
−(fg + ℎ − e) ±

√
(fg + ℎ − e)2 − 4fgℎ
2g ,

N∗ =
r2 − dC∗

r2
,

I∗ =
r1 − r1C∗ − aN∗

b .

(3.3)

3.2. Local stability analysis
In this section, we investigate the local stability around the
equilibrium points of the system (2.1) using the linearization
technique. The Jacobian matrix of the any arbitrary equilibrium
point (C,N, I) is

J(C,N, I) =
⎡
⎢
⎢
⎢
⎣

a11 −aC −bC
−dN a22 0

eIf

(C+f)2
− gI 0 eC

C+f
− gC − ℎ

⎤
⎥
⎥
⎥
⎦

(3.4)

where a11 = r1 − 2Cr1 − aN − bI and a22 = r2 − 2Nr2 − dC.
Theorem 3.1 The equilibrium point E0(0, 0, 0) is always unstable.
Proof: The eigenvalues of the Jacobian matrix around E0 are
r1, r2, −ℎ. since −ℎ < 0, The trivial equilibrium point E0 is stable
if others two roots are negative i.e. r1 < 0 and r2 < 0. But the
growth parameter r1 and r2 are always positive so the equilibrium
point E0 is unstable.

Theorem 3.2 The equilibrium point E1(0, 1, 0) is a stable node if
r1 < a and r2 > 0.

Proof: The eigenvalues of the Jacobian matrix at E1(0, 1, 0) are
r1 − a ,−r2 , −ℎ. So, E1 will be stable if r1 < a and r2 > 0.

Theorem 3.3 The equilibrium point E2(1, 0, 0) is a locally stable
if r1 > 0 , r2 > d and e

1 + f − g − ℎ < 0.

Proof: The eigenvalues of the Jacobian matrix evaluated at
E2(1, 0, 0) are −r1, r2 −d,

e

1+f
− g − ℎ. So, E2 will be locally stable

if r1 > 0 and r2 > d and e
1 + f − g − ℎ < 0 .

Theorem 3.4 The equilibrium point E3(C̄, N̄, 0) is a locally stable
if eC̄
C̄ + f

− gC̄ − ℎ < 0 and r1r2 > ad.

Proof: The Jacobian matrix around the equilibrium point E3 is

J(E3) =
⎡
⎢
⎢
⎢
⎣

−r1C̄ −aC̄ −bC̄
−dN̄ −r2N̄ 0

0 0 eC̄
C̄ + f

− gC̄ − ℎ

⎤
⎥
⎥
⎥
⎦

.

The eigenvalues of the Jacobian matrix evaluated at E3(C̄, N̄, 0)
are ec

C̄ + f
− gC̄ − ℎ,

(−r1C̄ − r2N̄) ±
√
(−r1C̄ − r2N̄)2 − 4(r1r2 − ad)C̄N̄

2 .

Therefore, E3 will stable if
eC̄

C̄ + f
− gC̄ − ℎ < 0 and r1r2 > ad.

Theorem 3.5 The interior equilibrium point E∗(C∗, N∗, I∗) is
locally asymptotically stable if  1 > 0,  2 > 0,  3 > 0 and
 1 2 >  3.

Proof: The Jacobian matrix around the equilibrium point E∗ is

J(E∗) =
⎡
⎢
⎢
⎢
⎣

−r1C∗ −aC∗ −bC∗

−dN∗ −r2N∗ 0
eI∗f

(C∗ + f)2
− gI∗ 0 0

⎤
⎥
⎥
⎥
⎦

.

The characteristic equation of the above matrix around the
interior equilibrium point E∗(C∗, N∗, I∗) is given by

�3 +  1�2 +  2� +  3 = 0, (3.5)

where
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 1 = (r1C∗ + r2N∗),

 2 = r1r2C∗N∗ − adC∗N∗ + bC∗ (
efI∗

(C∗ + f)2
− gI∗),

 3 = br2C∗N∗ (
efI∗

(C∗ + f)2
− gI∗).

Therefore, the interior equilibrium point E∗(C∗, N∗, I∗) will
be locally stable if the coe�cients of the characteristic equation
satis�es the the Routh-Hurwitz stability criterion i.e. if  1 >
0,  2 > 0,  3 > 0 and  1 2 >  3.

4. Hopf bifurcation analysis

Theorem 4.1 The system (2.1) undergoes a Hopf-bifurcation
around the positive interior equilibriumwhen the maximum growth
rate of e�ector cells e exceeds a critical value. The Hopf bifurcation
occurs at e = e∗ if and only if the following condition holds
(i) Hb(e∗) ≡  1(e∗) 2(e∗) −  3(e∗) = 0,
(ii) d

de [Re(�(e))]e=e∗ ≠ 0,
where � is the root of characteristic equation (3.5).

Proof: Let e = e∗, then the characteristic equation (3.5)
transforms to

(�2 +  2)(� +  1). (4.1)

Clearly, the roots of the equation (4.1) are �1 = i
√
 2 , �2 =

i
√
 2 , �3 = − 1. Now we can rewrite the roots considering e as

bifurcation parameter as follows

�1(e) = �1(e) + i�2(e),
�2(e) = �1(e) − i�2(e),
�3(e) = − 1(e).

(4.2)

Substituting �1(e) = �1(e) + i�2(e) into (3.5) and di�erentiating
with respect to e , and then separating the real and imaginary
parts, we obtain

X(e)�′1(e) − Y(e)�′2(e) + U(e) = 0,
Y(e)�′1(e) + X(e)�′2(e) + V(e) = 0,

(4.3)

where

X(e) = 3�21(e) + 2 1(e)�1(e) +  2(e) − 3�22(e),
Y(e) = 6�1(e)�2(e) + 2 1(e)�2(e),
U(e) = �21(e) 

′
1(e) +  ′2(e)�1(e) +  ′3(e) −  ′1(e)�

2
2(e),

V(e) = 2�1(e)�2(e) ′1(e) +  ′2(e)�2(e).

(4.4)

At e = e∗, we have �1(e∗) = 0 and �2(e∗) =
√
 2(e∗).

Using these results, we get
X(e∗) = −2 2(e∗),
Y(e∗) = 2 1(e∗)

√
 2(e∗),

U(e∗) =  ′3(e∗) −  ′1(e∗) 2(e∗),
V(e∗) =  ′2(e∗)

√
 2(e∗).

Now,
d
de [Re(�(e))]e=e∗ =

Y(e∗)V(e∗) + X(e∗)U(e∗)
X(e∗)2 + Y(e∗)2

=
 1(e∗) ′2(e∗) −  ′3(e∗) +  ′1(e∗) 

′
2(e∗)

2( 2(�∗)) + ( 1(�∗))2
≠ 0 , if  1(e∗) ′2(e∗) −  ′3(e∗) +  ′1(e∗) 2(e∗) ≠ 0
and �3(e∗) = − 1(e∗) ≠ 0.

So, the transversality condition (i.e. condition (ii)) holds and
the system (2.1) exhibits Hopf bifurcation at e = e∗.

5. Cancer Model with delay

To account for the delay in proliferation of the immune cells,
we revise the model (2.1) accordingly by incorporating a time-
delay (� > 0) in the immune cells, and then model (2.1) takes the
modi�ed form as:

dC
dt = r1C(1 − C) − aCN − bCI,

dN
dt = r2N(1 − N) − dCN,

dI
dt = eC(t − �)I(t − �)

C(t − �) + f
− gCI − ℎI.

(5.1)

For analysing system (5.1), we take the initial condition as follows:

C(�) =  1(�), N(�) =  2(�), I(�) =  3(�), −� ≤ � ≤ 0, (5.2)

where  = ( 1,  2,  3) ∈ ℂ+ such that  i(�) ≥
0, i = 1, 2, 3 ∀ � ∈ [−�, 0] and ℂ+ denotes Banach space
ℂ+([−�, 0], ℝ3

0,+) of continuous functions mapping the interval
[−�, 0] into ℝ3

0,+. We de�ne the norm of an element  in ℂ+
by || || = sup

−�≤�≤0
{| 1(�)|, | 2(�)|, | 3(�)|}.Moreover, we assume

that  i(0) ≥ 0 for each i. The fundamental theory of functional
di�erential equations [33] ensures that there exists a unique
solution C(t), N(t), I(t) to the delayed system (5.1) with initial
conditions (5.2).

5.1. Stability and bifurcation analysis
5.1.1. Characteristic equation

Let E∗(C∗, N∗, I∗) be any arbitrary equilibrium point. The
Jacobian matrix around E∗ leads us to the following characteristic
equation

det(J0 + e−��J� − �I3) = 0 , (5.3)

where I3 is the identity matrix of order 3 and

J0 =
⎛
⎜
⎜
⎝

V1 −V2 −V3

V4 V5 0
V6 0 −V7

⎞
⎟
⎟
⎠

,

and

J� =
⎛
⎜
⎜
⎝

0 0 0
0 0 0
M1 0 M2

⎞
⎟
⎟
⎠

,

where
V1 = r1 − 2C∗r1 − aN∗ − bI∗, V2 = aC∗, V3 = bC∗, V4 =
−dN∗, V5 = r2 − 2r2N∗ − dC∗, V6 = −gI∗, V7 = gC∗ + ℎ and

M1 =
efI∗

(C∗ + f)2
,M2 =

eC∗

(C∗ + f)
.

Now the Jacobian matrix of the delayed model (5.1) around the
equilibrium point E∗(C∗, N∗, I∗) is

JE∗ =
⎛
⎜
⎜
⎝

V1 − � −V2 −V3

V4 V5 − � 0
V6 +M1e−�� 0 M2e−�� − V7 − �

⎞
⎟
⎟
⎠

.

Then the characteristic equation of the delay system (5.1) at the
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equilibrium point E∗(C∗, N∗, I∗) is

�3 + P1�2 + P2� + P3 = e−��[�2D1 + �D2 + D3], (5.4)

where
P1 = (V7 − V1 − V5), P2 = V1V5 − V1V7 − V5V7 − V2V4 −

V3V6, P3 = V1V5V7 + V2V4V7 − V3V5V6, D1 = M2, D2 =
−M2(V1 + V5) − M1V3, D2 = M2(V1V5 + V2V4) − M1V3V5.
5.1.2. Local stability and Hopf-bifurcation

The coexisting equilibrium point E∗ will be locally asymptotically
stable if all the roots of the corresponding characteristic equation
(5.3) are negative or having negative real parts. The classical
Routh-Hurwitz criterion can not be used to investigate the stability
of the system.

Let �(�) = �(�) + i!(�) be the eigenvalue of the characteristic
equation (5.3), substituting this value in equation (5.4), we obtain
real and imaginary part respectively as

�3 − 3�!2 + P1(�2 − !2) + P2� + P3 = e−��[{D1(�2 − !2)
+D2� + D3} cos !� + (2D1�! + !D2) sin!�]

(5.5)
and

3�2! − !3 + 2P1�! + P2! = e−��[(2D1�! + D2!) cos !�
−{(�2 − !2)D1 + �D2 + D3} sin !�].

(5.6)
A necessary condition for a change in the stability of the

equilibrium point E∗ is that the corresponding characteristic
equation (5.4) admits purely imaginary roots. To examine this
condition, we set �=0 in equations (5.5) and (5.6), which leads to
the following results:

P3 − P1!2 = (−D1!2 + D3) cos !� + D2! sin!�, (5.7)

and

P2! − !3 = D2! cos!� − (−D1!2 + D3) sin!�. (5.8)

Eliminating � by squaring and adding (5.7) and (5.8), we obtain
the following equation for determining ! as

!6 + (P21 − 2P2 − D2
1)!4 + (P22 − 2P1P3 − D2

2 + 2D1D3)!2

+(P23 − D2
3) = 0.

(5.9)
Using substitution of !2 = � in the equation (5.9), we reduce it to
the following cubic equation:

k(�) = �3 + �1�2 + �2� + �3 = 0, (5.10)

where �1 = P21 − 2P2, �2 = P22 − 2P1P3 − D2
1 , �3 = P23 − D2

2 .
Now, if the coe�cients �1 and �3 have opposite sign then by

Descarte’s rule of sign equation (5.10) has at least one positive root
for either sign of �2. The following theorem establishes a criterion
for determining changes in the stability of the equilibrium point
E∗ with respect to the delay parameter �.

Theorem 5.1 Suppose that the interior equilibrium point E∗ exists
and locally asymptotically stable for �=0. Also let �0 = !2

0 ba a
positive root of (5.10).

(1) Then ∃ � = �∗ such that the interior equilibrium point E∗ of the
delay system (5.1) is asymptotically stable when 0 ≤ � < �∗ and
unstable for � > �∗.
(2) Furthermore, the system will undergo a Hopf-bifurcation at E∗

when � = �∗, provided W(!)X(!) − Z(!)Y(!)) > 0.

Proof: As !0 is a solution of eq.(5.9), then the characteristic
eq.(5.4) has purely imaginary roots ±i!0. From the equations
(5.7) and (5.8), we have �n∗ is a function of w0 for n = 0, 1, 2, ...;
which is given by

�n∗ = 1
!0

arccos [
(P1D1 − D2)!4

0 + PD!2
0 + P3D3

(D2!0)2 + (D3 − D1!2
0)2

]

+
2�p
!0

, where PD = P2D2 − P1D3 − P3D1.
(5.11)

The systemwill be locally asymptotically stable around the interior
equilibrium point E∗ for � = 0 if the condition �1�2 − �3 > 0 . In
this case by Butler’s lemma, E∗ will remain stable for � < �∗ such
that �∗ = min

m≥0
�n∗ and E∗ will be unstable for � ≥ �∗, when the

transversality condition holds.
Transversality condition:

We now proceed to verify the transversality condition,
d
d� [Re(�(�))]�=�∗ > 0.

Now di�erentiating eq. (5.4) with respect to � and then putting
� = 0 we get ,

d�

d�
[−3!2+P2+�{cos!�(−!2D1+D3)+!D2sin!�}−D2cos!�−

2!D1sin!�] +
d!

d�
[−2!P1 + �sin!�(−!2D1 +D3) + 2!D1cos!� −

D2sin!� − �!D2cos!�] = −!(−!2D1 + D3)sin!� + !2D2cos!�.
Di�erentiating eq. (5.5) with respect to � and putting �=0 then

we get ,
− d�

d�
[−2!P1+�sin!�(−!2D1+D3)+ 2!D1cos!� −D2sin!�−

�!D2cos!�]+
d!

d�
[−3!2+P2+�{cos!�(−!2D1+D3)+!D2sin!�}−

D2cos!� − 2!D1sin!�] = −!2D2sin!� − !cos!�(−!2D1 + D3).
We can rewrite the above two equations as

X(!) d�
d�
+ Y(!) d!

d�
= W(!) (5.12)

and
−Y(!) d�

d�
+ X(!) d!

d�
= Z(!) (5.13)

where
X(!) = −3!2 + P2 + �{cos!�(−!2D1 + D3) + !D2sin!�} −
D2cos!� − 2!D1sin!�,
Y(!) = −2!P1+�sin!�(−!2D1+D3)+2!D1cos!�−D2sin!�−
�!D2cos!�,
W(!) = −!(−!2D1 + D3)sin!� + !2D2cos!�,
Z(!) = −!2D2sin!� − !cos!�(−!2D1 + D3).

From (5.12) and (5.13) we have ,
d
d� [Re(�(�))]�=�∗ , !=!0 =

W(!)X(!) − Z(!)Y(!))
X2(!) + Y2(!)

,

which shows that
d
d� [Re(�(�))]�=�∗ , !=!0 > 0 ifW(!)X(!) − Z(!)Y(!)) > 0.
Therefore, the transversality condition is satis�ed and hence

Hopf bifurcation occurs at � = �∗. This completes the proof of the
theorem.

6. Numerical simulations

6.1. Numerical simulations without delay

In this section, we present numerical simulations of system
(2.1) to validate the earlier analytical results. All simulations
are carried out using MATLAB. This study highlights system
stability, bifurcation phenomena, limit-cycle formation, higher-
order periodic oscillations, and chaotic dynamics.
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For illustrative purpose, we use the following parameter values:

a = 1, b = 2.5, d = 1.5, e = 2.4, f = 1, g = 0.2,
ℎ = 0.5, p = 0.5, r1 = 1, r2 = 0.6,

(6.1)

and we choose the initial condition as [C(0), N(0), I(0)] =
[0.3, 0.7, 0.2].
Our investigation begins by the examining the dynamical

behaviors of the system (2.1) as we vary the maximum growth
rate of e�ector cells, denoted by e. Increasing the growth rate of
e�ector cells in the presence of cancer cells leads to the system
to move from stable focus to chaotic oscillation behaviors. At
e = 2.4, the system demostrates a stable solution (see Fig. 1).

Figure 1. The �rst row left �gure is the time series for the cancer cells;
the �rst row right �gure is the time series for the normal cells; the second
row left �gure is the time series for the immune cells and the second row
right �gure is the 3D phase portrait of the stable interior equilibrium of
the system (2.1). Here e = 2.5 and the other parameters remained same
as in (6.2) and the inital condition is [C(0), N(0), I(0)] = [0.3, 0.7, 0.2].

The system displays limit cycle oscillation at e = 2.8 (see Figure
2). However at e = 3.4 and e = 4.5 the system shows 2-periodic
oscillations (see Figure 3) and chaotic dynamics (see Figure 4)
respectively.

Figure 2. This �gure illustrates that system (2.1) exhibits limit cycle
oscillation when e = 2.8 and the other parameter values kept same as in
Figure 1.

Figure 3. This �gure represents that system (2.1) shows two-periodic
oscillation when e = 3.4 and the other parameter values kept unaltered
as in Figure 1.

Figure 4. This �gure represents that the system (2.1) becomes chaotic for
e = 4.5 and the other parameter values kept same as in Figure 1.

From the above �gures, we observe that as the proliferation
rate of immune cells in the presence of cancer cells is gradually
increased, the system enters a chaotic regime via a period-
doubling bifurcation. Biologically, increasing e corresponds to
stronger immune activation or proliferation, whichmay arise from
immunotherapy, enhanced antigen presentation, or increased
immune sensitivity to tumor signals. While moderate immune
stimulation stabilizes tumor–immune interactions, excessive
immune proliferation introduces strong nonlinear feedback,
leading to repeated cycles of immune overactivation and tumor
suppression followed by immune decline and tumor regrowth.
These oscillatory cycles undergo successive period-doubling
bifurcations and eventually transition to chaotic dynamics,
re�ecting a loss of immune regulation. Such chaotic behavior
represents unpredictable tumor–immune interactions and may
help explain irregular tumor growth, immune escape, and variable
treatment responses observed during cancer progression.

6.2. Numerical simulations with delay

In this section, we conduct numerical simulations of system (5.1)
for di�erent values of �. Here we have chosen the same parameter
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values i.e.

a = 1, b = 2.5, d = 1.5, e = 2.4, f = 1, g = 0.2, ℎ = 0.5,
p = 0.5, r1 = 1, r2 = 0.6.

(6.2)

In the absence of delay (i.e. � = 0), the system (5.1) shows stable
of all cells at the equilibrium point E∗(0.3051, 0.2373, 0.1830)
while the parameter values are same as above.

To investigate the impact of activation delay in the immune
response, we gradually increase the value of the delay parameter
�. We observe that the system remains stable for very small time
delays, for example at � = 0.05 (see Figure 5).

Figure 5. This �gure represents that the system (5.1) is stable for � = 0.05
and the other parameter values kept same as in equation (6.2).

Now, as the value of � is increased, system (5.1) undergoes a
Hopf bifurcation when the delay parameter � crosses its critical
value �0 = 0.06. Consequently, the system loses stability and gives
rise to limit-cycle oscillations. For � = 1, system (5.1) exhibits
sustained limit-cycle oscillations (see Figure 6).

Figure 6. This �gure represents that the system (5.1) shows limit cycle
oscillation for � = 1, while other parameter values kept same as in
equation (6.2).

With a further increase in the time delay, the system (5.1)
exhibits period-doubling behavior. At � = 2, the system shows
2-periodic limit-cycle oscillations (see Figure 7). For � = 2.1, the
system exhibits 4-periodic limit-cycle oscillations (see Figure 8).

Higher-order periodic oscillations and chaotic dynamics are
observed as the time delay is increased further. In particular,
for � = 2.2, system (5.1) enters a chaotic regime (see Figure 9).

Figure 7. This �gure represents that the system (5.1) shows 2-periodic
oscillation for � = 2 and the other parameter values kept same as in
equation (6.2).

Figure 8. This �gure represents that the system (5.1) shows 4-periodic
oscillation for � = 2.1 and the other parameter values kept same as in
equation (6.2).

Figure 9. This �gure represents that the system (5.1) becomes chaotic for
� = 2.2 and the other parameter values kept same as in equation (6.2).

7 Applied Mathematical Biosystems



A mathematical model of cancer Pathak et al.

For better visualization, we construct the bifurcation diagram
of system (5.1) (Figure 10), taking � as the bifurcation parameter.
We observe that the system remains stable for 0 ≤ � < 0.06.
Limit-cycle oscillations occur for 0.06 ≤ � ≤ 1.2. The system
undergoes period-doubling bifurcations for 1.2 < � ≤ 2.1. Finally,
for � > 2.1, the system exhibits higher-order periodic oscillations
and chaotic dynamics.

Figure 10. Bifurcation diagrams with respect to � for system (5.1), where
the other parameters are remained same as in Figure 1.

In system (5.1), the delay parameter � represents the �nite time
required for immune cells to become activated and proliferate in
response to cancer cells. Biologically, this delay may arise from
processes such as antigen recognition, immune cell di�erentiation,
clonal expansion, and intracellular signaling cascades. In the
absence of delay (� = 0), the immune response is e�ectively
instantaneous, allowing the system to maintain a stable focus
through e�cient feedback regulation. In contrast, increasing the
delay � introduces memory e�ects into the immune response,
causing immune cells to react to past tumor levels rather than the
current state. This delayed feedback destabilizes the equilibrium,
leading to oscillatory behavior, period-doubling bifurcations, and
ultimately chaotic dynamics. Biologically, such chaos re�ects
a loss of synchronization between tumor growth and immune
activation, resulting in irregular tumor control and unpredictable
disease progression.

7. Conclusion

Mathematical oncology is an emerging research area in which
mathematical models are developed to describe and quantitatively
relate the key physical and biological factors that in�uence
cancer development, invasion, metastasis, treatment response,
and therapeutic resistance. At the individual level, mathematical
modeling has been employed to understand the mechanisms
by which the immune system combats cellular diseases and to
propose potential intervention strategies. At a broader level,
mathematical biologists have developed theoretical frameworks
to analyze, predict, and control cancer progression and spread.
In the present study, we investigate the global dynamics of a

cancer model that captures the interactions among cancer cells,
normal cells, and immune e�ector cells activated in response to
the presence of cancer. For lower values of the immune e�ector
cell activation rate (e), the immune response is moderate and well
regulated, allowing cancer cells and normal cells to coexist around

a biologically feasible interior equilibrium. As the activation rate
(e) increases, representing enhanced immune stimulation, the
intensi�ed immune–tumor interaction destabilizes the steady
state, leading �rst to sustained oscillations in the population
densities. Further increase in (e) results in complex dynamical
behavior, with the system ultimately entering a chaotic regime,
re�ecting irregular and unpredictable immune-mediated tumor
control.
In the second scenario, a time delay is incorporated into the

system to account for the �nite time required for immune cells
to become activated and proliferate in response to cancer cells.
The introduction of this delay signi�cantly enriches the system
dynamics. For small delays, the immune response remains timely
and e�ective, allowing the system to maintain stability. As the
delay increases, the misalignment between tumor growth and
immune activation leads to limit-cycle oscillations, followed by
two-periodic oscillations. Further increases in the delay result
in four-periodic oscillations and eventually give rise to higher-
order periodic and chaotic dynamics, re�ecting irregular and
unpredictable tumor control by the immune system.
In conclusion, our study demonstrates that both the immune

e�ector cell activation rate and the activation delay critically
in�uence tumor–immune dynamics. Moderate immune
responses maintain system stability, whereas increased activation
or longer delays can induce oscillations and chaotic behavior,
highlighting the complex and sensitive nature of immune-
mediated tumor control.
In summary, our study demonstrates that both the immune

e�ector cell activation rate and the activation delay play critical
roles in shaping tumor–immune dynamics. Moderate immune
responses help maintain system stability, whereas increased
activation or longer delays can induce oscillatory and chaotic
behavior, highlighting the complex and sensitive nature of
immune-mediated tumor control.
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