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Abstract

The center plays a fundamental role in group theory, algebraic geometry, ring theory, and semiring theory. Considerable research
has been devoted to the study of centers in semiring, yielding important insights into the development of semiring theory. This article
introduces the notion of the center of a semiring and aims to investigate its structural properties within the framework of semiring theory.
Additionally, several algebraic characterizations of center semiring are examined.
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1. INTRODUCTION

In recent years, there has been a substantial increase in interest
in the study of partially ordered and totally ordered algebraic
structures such as semigroups, groups, semirings, semimodules,
rings, and �elds. A signi�cant portion of ring theory has been
extended to general semirings. Some mathematicians even argue
that semirings are themore fundamental algebraic structures, and
that restricting attention to rings is analogous to specializing to
algebra over the complex numbers.

The concept of a semiring was introduced by Vandiver in 1934.
However, semirings had already established their signi�cance
in mathematics well before this period. The development of
semiring theory has been progressing steadily since the 1950s.
The theories of rings and semigroups have a substantial in�uence
on the advancement of semirings and ordered semirings
In the literature, a semiring is a non-empty set S together

with two binary operations “+” and “.” (usually denoted by
juxtaposition) such that (S, +) is a commutative semigroup
and (S, ⋅) is a semigroup, which are connected by ring-
like distributivity. So semirings which provide a common
generalization of rings and distributive lattices appear in a natural
manner in some applications to the theory of automata, formal
languages, optimization theory and other branches of applied
mathematics. In the study of semirings and their representations,
researchers employ methods and techniques from ring theory and
lattice theory, along with a wide range of tools from categorical
and universal algebra.

A semiring S is called a semiring with zero element ‘0’ if a+0 =
0 + a = a and 0.a = a.0 = 0 for all a ∈ S. A semiring S is called
a semiring with identity 1 if 1 ⋅ a = a ⋅ 1 = a for all a ∈ S.

A semiring may or may not have a zero and an identity element.
Throughout this paper a semiring (S, +, .)with zero element ‘0’

and identity element ‘1’ is considered.
Let (S, +, .) and (T, +, .) be two semirings. Then a mapping

f ∶ S ⟶ T is said to be a semiring homomorphism [1] of S
into T if f(x + y) = f(x) + f(y), and f(xy) = f(x)f(y), for all
x, y ∈ S. An injective homomorphism is called amonomorphism,
a surjective homomorphism is called an epimorphism and a
bijective homomorphism is called an isomorphism.

The notion of centerZ(R) of a ringR is a substructure consisting
of the elements x such that xy = yx for all y in R. Moreover Z(R)
is a subring of the ring R but not necessarily an ideal of R. Several
authors studied various center-like subsets for rings and under
certain natural conditions. However, the study of centers within
the framework of semirings has received relatively little attention
so far.

Some recent works on center-like subsets of rings can be found
in [2], [3], [4] . In 2006, M.K. Sen et al. de�ned [5] the term
“Center of Semiring” to characterize a unique class of elements in
a semiring. In [6], the notion of the Birkho� centre of a c-semiring
was introduced, and in [7], its structure was studied. The purpose
of this paper is to investigate many results on center of a semiring
which are analogous to the same direction in ring theory.

2. CENTER OF A SEMIRING S

In this section, some examples and basic results are provided, as
they are useful for subsequent results in the next sections.

De�nition 2.1 Let S be a semiring. A subset Z(S) of a semiring S
is called a center of S which is de�ned by Z(S) = {a ∈ S ∶ ab =
ba for all b ∈ S}.

Example 2.2 Consider (ℕ,⊕,⊙) is a semiring , where a ⊕ b =
max{a, b} and a ⊙ b = min{a, b}. Then Z(ℕ) = ℕ.
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Example 2.3 Consider S = {0, 1, x}. De�ne the operations “+”
and “.” on S by means of the following tables:

+ 0 x 1
0 0 x 1
x x x 1
1 1 1 1

. 0 x 1
0 0 0 0
x 0 x x
1 0 x 1

Then (S, +, ⋅) is a semiring and Z(S) = {0, x, 1} = S.

Example 2.4 Consider S = {0, x, y, 1}. De�ne the operations “+”
and “.” on S by the following tables :

+ 0 x y 1
0 0 x y 1
x x x y 1
y y y y 1
1 1 1 1 1

. 0 x y 1
0 0 0 0 0
x 0 x x x
y 0 x y y
1 0 x y 1

Then (S, +, ⋅) is a semiring and Z(S) = {0, x, y, 1} = S.

Theorem 2.5 The center of a semiring S is a subsemiring of S.

Proof: Since S is a semiring with zero element 0, it follows that
0 ∈ Z(S). Thus, the center of a semiring S is non-empty. Let
x, y ∈ Z(S). Then it shows that

x + y ∈ Z(S) and xy ∈ Z(S).

For any k ∈ S,

(x + y)k = xk + yk = kx + ky

since x ∈ Z(S) and y ∈ Z(S)

= k(x + y).

Therefore, x + y ∈ Z(S).
Similarly, for any k ∈ S,

xyk = xky since y ∈ Z(S)

= kxy since x ∈ Z(S).

Therefore, xy ∈ Z(S). Consequently, Z(S) is closed under
addition and multiplication and hence forms a subsemiring of S.

3. SOME PROPERTIES OF Z(S) OF SEMIRING S

In this section, some elementary properties of Z(S) for the
semiring S are discussed. The discussion begins by exploring
the isomorphism property of Z(S) of the semiring S.

Theorem 3.1 If two semirings S1 and S2 are isomorphic, then their
centers Z(S1) and Z(S2) are isomorphic.

Proof: Consider two semirings S1 and S2 which are isomorphic.
Then there is an isomorphism

f ∶ S1 ⟶S2.

Let x ∈ Z(S1). Then for any s1 ∈ S1,

xs1 = s1x.

Let f(x) = y, where y ∈ S2.

Since f is an isomorphism, for any s2 ∈ S2, there exists s1 ∈ S1
such that f(s1) = s2. Thus

ys2 = f(x)f(s1) = f(xs1) = f(s1x) = f(s1)f(x) = s2y,

since x ∈ Z(S1).
Therefore, y ∈ Z(S2), which shows that f(Z(S1)) ⊆ Z(S2).

Again, let b ∈ Z(S2). Then b = f(a) where a ∈ S1.
Since f is an isomorphism, for any y ∈ S2, there exists x ∈ S1

such that y = f(x). Since b ∈ Z(S2), it follows that by = yb. Now

by = yb
⟹ f(a)f(x) = f(x)f(a)
⟹ f(ax) = f(xa)
⟹ ax = xa,

since f is an isomorphism. This implies that a ∈ Z(S1).
Therefore, b = f(a) ∈ f(Z(S1)). Thus Z(S2) ⊆ f(Z(S1)),

and together with the earlier inclusion, it follows that Z(S2) =
f(Z(S1)). So,

g = f|Z(S1) ∶ Z(S1)⟶ Z(S2)

is well de�ned and it is an isomorphism from Z(S1) onto Z(S2).

The following example shows that the converse of the above
theorem 3.1 is not true i.e. if Z(S1) and Z(S2) are isomorphic then
S1 and S2 may not be isomorphic, in general.

Example 3.2 Z(ℤ+
0 ) = {0} and Z(ℝ+

0 ) = {0}. But ℤ+
0 andℝ+

0 are
not isomorphic.

Theorem 3.3 Let S and S′ be two semiring. If f ∶ S → S′ is a
monomorphism, then f(Z(S)) = Z(f(S)).

Proof: Suppose x ∈ f(Z(S)). Then x = f(y) for some y ∈ Z(S).
Then it is necessary to show that

f(y)s = sf(y)

for all s ∈ f(S). Now for any s ∈ f(S), it follows that

f(y)s = f(y)f(r) = f(yr) = f(ry) = f(r)f(y) = sf(y).

Therefore, x = f(y) ∈ f(Z(S)). Hence f(Z(S)) ⊆ Z(f(S)).
Again, let x′ ∈ Z(f(S)). Then x′ = f(r′) for some r′ ∈ S. The

next step is to show that r′ ∈ Z(S). Since x′ ∈ Z(f(S)), for any
f(s) ∈ f(S), it follows that

x′f(s) = f(s)x′

⟹ f(r′)f(s) = f(s)f(r′)
⟹ f(r′s) = f(sr′)
⟹ r′s = sr′,

since f is a monomorphism . Therefore, r′ ∈ Z(S). Thus
Z(f(S)) ⊆ f(Z(S)). These two inclusions conclude that
Z(f(S)) = f(Z(S)).

Theorem 3.4 Let S be a commutative semiring with identity
element 1. Then a ∈ Z(S) if and only if aIn ∈ Z(Mn(S)).

Proof: Let a ∈ Z(S). Then ab = ba for all b ∈ S. To show that
aIn ∈ Z(Mn(S)).
Now
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(aIn)B =

⎛
⎜
⎜
⎜
⎝

a 0 ⋯ 0
0 a ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ a

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

b11 b12 ⋯ b1n
b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮
bn1 bn2 ⋯ bnn

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

ab11 ab12 ⋯ ab1n
ab21 ab22 ⋯ ab2n
⋮ ⋮ ⋱ ⋮

abn1 abn2 ⋯ abnn

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

b11a b12a ⋯ b1na
b21a b22a ⋯ b2na
⋮ ⋮ ⋱ ⋮

bn1a bn2a ⋯ bnna

⎞
⎟
⎟
⎟
⎠

(since a ∈ Z(S))

=

⎛
⎜
⎜
⎜
⎝

b11 b12 ⋯ b1n
b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮
bn1 bn2 ⋯ bnn

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a 0 ⋯ 0
0 a ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ a

⎞
⎟
⎟
⎟
⎠

= B(aIn).

This implies that aIn ∈ Z(Mn(S)).
Conversely, suppose that aIn ∈ Z(Mn(S)). It remains to show

that a ∈ Z(S). For any x ∈ S, let B =

⎛
⎜
⎜
⎜
⎝

x 0 ⋯ 0
0 x ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ x

⎞
⎟
⎟
⎟
⎠

. Since

aIn ∈ Z(Mn(S)), it follows that (aIn)B = B(aIn). Comparing
both sides, yields ax = xa. Since x is arbitrary, it follows that
a ∈ Z(S).

Theorem 3.5 If S1 and S2 are two semirings, then Z(S1 × S2) =
Z(S1) × Z(S2).

Proof: Let S1 and S2 be two semirings with zero elements 0S1 and
0S2 respectively. Suppose z ∈ Z(S1×S2). Then z = (x, y) ∈ S1×S2
and for any (a, b) ∈ S1 × S2,

(x, y)(a, b) = (a, b)(x, y)
⟹ (xa, yb) = (ax, by).

Comparing both sides, yields

xa = ax, and yb = by.

This implies that xa = ax for all a ∈ S1 and yb = by for all
b ∈ S2. Thus, it follows that x ∈ Z(S1) and y ∈ Z(S2). Therefore,

z = (x, y) ∈ Z(S1) × Z(S2)

and hence

Z(S1 × S2) ⊆ (S1) × Z(S2). (1)

For reverse part, let (a, b) ∈ Z(S1) × Z(S2). This implies that
a ∈ Z(S1) and b ∈ Z(S2).
Consequently, every x ∈ S1 satis�es ax = xa, while each

y ∈ S2 satis�es by = yb. Now,

(a, b)(x, y) = (ax, by) = (xa, yb) = (x, y)(a, b),

since a ∈ Z(S1) and b ∈ Z(S2). This implies that

(a, b) ∈ Z(S1 × S2)

and hence
Z(S1) × Z(S2) ⊆ Z(S1 × S2) (2)

From (1) and (2), it follows that Z(S1 × S2) = Z(S1) × Z(S2).

4. APPLICATION OF CENTER SEMIRING

The notion of the center in semiring theory developed as a
generalization of the corresponding concept in ring theory. The
center plays a vital role in the study of semirings and other
algebraic structures by helping to analyze their fundamental
properties. It has numerous important applications in algebra
and related �elds. A semiring is commutative precisely when
it is equal to its center, making the center an e�ective tool for
identifying and understanding non-commutativity. Moreover,
this concept �nds signi�cant applications in practical areas such
as cryptography, coding theory, and communication.

5. CONCLUSION

In this paper, it has been shown that the center of a semiring
is itself a subsemiring. The study of the algebraic structures
associated with centers of semiring is therefore of considerable
interest. This work also encourages further investigation into
various types of centers in semirings. Since semirings admit
many special kinds of centers, the author intends to explore
several of them in future research. Moreover, there are numerous
open problems related to these special centers and it is hoped
that solutions to some of these problems will be obtained. It
is also anticipated that future research will extend to other
algebraic structures with signi�cant practical applications, such
as cryptography, coding theory, and communication systems.
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